
DYNAMIC POLYMORPHIC
RECONFIGURATION TO EFFECTIVELY

“CLOAK” A CIRCUIT’S FUNCTION

THESIS

Jeffrey L. Falkinburg, First Lieutenant, USAF

AFIT/GCE/ENG/11-03

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense,
or the United States Government. This material is declared a work of the U.S.
Government and is not subject to copyright protection in the United States.

AFIT/GCE/ENG/11-03

DYNAMIC POLYMORPHIC

RECONFIGURATION TO EFFECTIVELY

“CLOAK ” A CIRCUIT’S FUNCTION

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Engineering

Jeffrey L. Falkinburg, B.S.C.E.

First Lieutenant, USAF

March 2011

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GCE/ENG/11-03

Abstract

Today’s society has become more dependent on the integrity and protection of

digital information used in daily transactions resulting in an ever increasing need

for information security. Additionally, the need for faster and more secure crypto-

graphic algorithms to provide this information security has become paramount. Hard-

ware implementations of cryptographic algorithms provide the necessary increase in

throughput, but at a cost of leaking critical information. Side Channel Analysis

(SCA) attacks allow an attacker to exploit the regular and predictable power signa-

tures leaked by cryptographic functions used in algorithms such as RSA. The RSA

public key cryptographic algorithm is particularly vulnerable to SCA attack in the

timing of the multiplication and squaring operations used in the modular exponen-

tiation process. Hardware obfuscation is used to modify the circuit’s hardware to

intentionally conceal its functionality from an attacker. In this research the focus is

on a means to counteract this vulnerability by creating a Critically Low Observable

Anti-Tamper Keeping Circuit (CLOAK) capable of continuously changing the way it

functions in both power consumption and timing. A Field-Programmable Gate Array

(FPGA) based Encryption System testbed was developed to rapidly prototype and

conduct SCA of protected and unprotected cryptographic algorithms. This research

has determined that a polymorphic circuit design capable of varying circuit power

consumption and timing can protect a cryptographic device from an Electromag-

netic Analysis (EMA) attacks. In essence, we are effectively CLOAKing the circuit

functions from an attacker.

iv

Acknowledgements

First and foremost, I owe a large debt of gratitude to my wife and children for

their continued support in my career and educational advancement. Without their

support, none of this would have been possible. I would also like to thank my advisor,

Dr. Yong Kim, for all of his guidance and support throughout this entire process.

Without him I never would have been able to complete this thesis. I would also like

to extend a sincerest thanks and appreciation to my committee members: Lt Col

Jeffrey Humphries, Dr. Michael Grimaila, and Maj Todd Andel for their support and

dedication to my research.

Jeffrey L. Falkinburg

v

Table of Contents

Page

Abstract . iv

Acknowledgements . v

List of Figures . ix

List of Tables . xiv

List of Abbreviations . xvi

I. Introduction . 1

1.1 Motivation . 1
1.2 Problem Statement . 4
1.3 Research Objectives and Contributions . 4

1.3.1 Polymorphic Circuit Design . 5
1.3.2 Implement RSA with Reconfiguration . 5
1.3.3 Analyze Side Channel Signatures . 6

1.4 Thesis Organization . 6

II. Literature Review . 7

2.1 Reconfigurable Computing . 7
2.1.1 FPGAs . 8
2.1.2 Run-time and Partial Reconfiguration . 9
2.1.3 Polymorphic Reconfiguration . 10

2.2 Cryptographic Algorithms . 12
2.2.1 Key Generation and Protection . 13
2.2.2 AES . 15
2.2.3 RSA . 16

2.3 Hardware Obfuscation . 19
2.3.1 Security Through Obscurity . 19
2.3.2 Authentication Based Obfuscation . 20

2.4 Circuit Vulnerabilities . 21
2.4.1 Reverse Engineering . 21
2.4.2 Invasive Techniques . 22
2.4.3 Semi-invasive Techniques . 22
2.4.4 Side Channel Analysis Attacks . 23

2.5 Power Analysis . 23
2.5.1 Power Analysis Attacks . 25
2.5.2 Power Analysis Countermeasures . 26

2.6 Timing Analysis . 27
2.6.1 Timing Analysis Attacks . 28

vi

Page

2.6.2 Timing Attack Countermeasures . 28
2.7 Electromagnetic Analysis . 29

2.7.1 EMA Attacks . 30
2.7.2 EMA Countermeasures . 31

2.8 Literature Review Summary . 31

III. Methodology of the Side Channel Analysis “CLOAK ”
Countermeasure . 32

3.1 Problem Definition . 32
3.1.1 Goals and Hypothesis . 32
3.1.2 Research Approach . 33

3.2 System Boundaries . 36
3.2.1 RSA Encryption Algorithm . 37
3.2.2 Xilinx Virtex-5 and Virtex-6 FPGAs . 37
3.2.3 Processor Core . 37
3.2.4 CLOAK Countermeasure . 37

3.3 System Services . 38
3.4 Workload Parameters . 38

3.4.1 Message Offered Load . 38
3.4.2 Random versus Static Message . 39
3.4.3 Encryption Key Length . 39
3.4.4 Polymorphic Key Length . 39

3.5 Performance Metrics . 40
3.5.1 FPGA Area Overhead for Polymorphic Logic 40
3.5.2 Modular Exponentiation Timing Delay Variation 40
3.5.3 Encryption Circuit Timing Delay/Latency 41
3.5.4 Number of Traces . 41

3.6 System Parameters . 42
3.6.1 Background Noise . 42
3.6.2 Implementation of RSA . 42
3.6.3 Polymorphic Frequency . 42
3.6.4 Xilinx FPGAs . 43
3.6.5 Processor Core . 43

3.7 Factors . 44
3.7.1 Polymorphic Frequency . 44
3.7.2 FPGA Version for RSA . 44
3.7.3 Random versus Static Message . 45

3.8 Evaluation Technique . 45
3.9 Experimental Design . 46
3.10 Methodology Summary . 46

vii

Page

IV. Results . 48

4.1 Experimental Setup . 48
4.2 Attack Methodology (Top vs. Bottom and Probe Type) 50
4.3 RSA Encryption Development . 54
4.4 Polymorphic Circuit Development . 58

4.4.1 Flatten Power Signature . 58
4.4.2 Randomize Power Signature . 61
4.4.3 Randomize Circuit Timing . 64

4.5 Protected RSA SCA Results . 69
4.6 Virtex-6 FPGA Investigations . 72

4.6.1 Unprotected RSA SCA Results . 74
4.6.2 Protected RSA SCA Results . 76

4.7 Design Comparison . 78
4.8 Results Summary . 80

V. Conclusion . 82

5.1 Completed Objectives . 82
5.2 Conclusions . 83
5.3 Contributions . 84
5.4 Future Work . 84
5.5 Summary . 85

A. Encryption System Flowcharts . 86

B. RSA Traces . 89

2.1 Virtex-5 FPGA Traces . 89
2.2 Virtex-6 FPGA Traces . 93

C. Version Control . 95

D. Data Sheets . 98

4.1 Willtek 1207 Inductive Probe . 98
4.2 Inspector EM Probe . 98
4.3 Lecroy WavePro 725Zi Oscilloscope . 98
4.4 Agilent E3631A DC Power Supply . 98
4.5 Virtex-5 FPGA . 99
4.6 Virtex-6 FPGA . 99

Bibliography . 100
Vita . 106

viii

List of Figures

Figure Page

1 Polymorphic Gate Conversion . 11

2 Polymorphic Switch . 12

3 4-bit LFSR . 14

4 AES - Symmetric-Key Cryptographic Algorithm . 15

5 RSA - Public-Key Cryptographic Algorithm . 16

6 Montgomery Modular Multiplier . 19

7 Cross-Correlation of Modular Exponentiation on a
Smart Card [46] . 29

8 Development of the Polymorphic Circuit Design using
Block Diagrams . 34

9 Polymorphic CLOAK Encryption System . 36

10 Cross Section for Virtex-5 Flip-Chip Package [11] 43

11 Experimental System Configuration . 45

12 Experimental System Setup . 48

13 RSA Encryption System Connections . 49

14 Inspector console output for a round of RSA Encryption
using sample key and modulus from [37] . 50

15 Capacitors on the bottom of the Virtex-5 FPGA . 51

16 Depackaging the Virtex-5 Chip . 52

17 Comparison of EM signal strength using Willtek probe 52

18 Comparison of EM signal strength between probes 53

19 EM Inductive Probe on Virtex-5 FPGA . 53

20 RSA Encryption System . 54

ix

Figure Page

21 SEMA of Combined Square and Multiply Trace with
key (5 8E B5) - RSA Version A . 56

22 SEMA of Separate Square and Multiply Trace with key
(E B5) - RSA Version B . 56

23 Separate Square and Multiply Trace after signal
processing - RSA Version B . 57

24 Separate Square and Multiply Trace after signal
processing using constant timing - RSA Version 2B 58

25 SEMA overlaid on Level Power Consumption Trace
with key (E B5) - RSA Version C . 59

26 SEMA overlaid on Level Power Consumption Trace
with key (E B5) after signal processing - RSA Version C 60

27 Level Power Consumption Trace after signal processing
using constant timing - RSA Version 2C . 60

28 Level Power Consumption Trace after elastic alignment
and average - RSA Version C . 61

29 Polymorphic Modular Multiplier with Polymorphic
Adder . 62

30 SEMA overlaid on Randomized Power Consumption
Trace with key (E B5) - RSA Version E. 62

31 SEMA overlaid on Randomized Power Consumption
Trace with key (E B5) after signal processing - RSA
Version E . 63

32 Randomized Power Consumption Trace after elastic
alignment and average - RSA Version E. 64

33 Pseudo-Random Timing Flow Chart . 65

34 CLOAK Modular Multiplier . 66

35 Randomized Power and Timing Trace - RSA Version F 67

x

Figure Page

36 SEMA overlaid on Randomized Power and Timing
Trace with key (E B5) after signal processing - RSA
Version F . 68

37 Randomized Power and Timing Trace after elastic
alignment and average - RSA Version F . 68

38 Comparison of EM signals for square and multiply
operations after signal processing . 69

39 Comparison of EM signals for square and multiply
operations using identical inputs - RSA Version F 70

40 Comparison of square and multiply operations using
identical inputs . 71

41 Comparison of standard deviation of square and
multiply operations using identical inputs . 72

42 Comparison of standard deviation of square and
multiply operations after frequency filtering . 72

43 Comparison of standard deviation of 100 traces using
identical inputs . 73

44 Fan Assembly on Virtex-6 FPGA . 74

45 EM Inductive Probe on Virtex-6 FPGA . 74

46 Comparison of EM signals for Separate Square and
Multiply Trace after signal processing using fixed
plaintext on a Virtex-6 FPGA . 75

47 Comparison of EM signals for Separate Square and
Multiply Trace after signal processing using random
plaintext on a Virtex-6 FPGA . 76

48 Comparison of EM signals for Randomized Power and
Timing Trace after signal processing using fixed
plaintext on a Virtex-6 FPGA . 77

49 Comparison of EM signals for Randomized Power and
Timing Trace after signal processing using random
plaintext on a Virtex-6 FPGA . 77

xi

Figure Page

50 RSA Encryption System Flowchart on the Virtex-5
FPGA . 86

51 Encryption System Flowchart on the Virtex-6 FPGA 87

52 AES Encryption System Flowchart on the Virtex-5
FPGA . 88

53 Full 512-bit Combined Square and Multiply Trace -
RSA Version A . 89

54 Full 512-bit Separate Square and Multiply Trace - RSA
Version B . 89

55 Full 512-bit Separate Square and Multiply Trace using
constant timing - RSA Version 2B . 89

56 Full 512-bit Level Power Consumption Trace - RSA
Version C . 89

57 Full 512-bit Level Power Consumption Trace after
signal processing - RSA Version C . 90

58 Full 512-bit Level Power Consumption Trace using
constant timing - RSA Version 2C . 90

59 Full 512-bit Level Power Consumption Trace after
elastic alignment and average - RSA Version C . 90

60 Full 512-bit Randomized Power Consumption Trace -
RSA Version E . 90

61 Full 512-bit Randomized Power Consumption Trace
after signal processing - RSA Version E . 91

62 Full 512-bit Randomized Power Consumption Trace
after elastic alignment and average - RSA Version E 91

63 Full 512-bit Randomized Power and Timing Trace -
RSA Version F . 91

64 Full 512-bit Randomized Power and Timing Trace after
signal processing - RSA Version F . 91

xii

Figure Page

65 Full 512-bit Randomized Power and Timing Trace after
elastic alignment and average - RSA Version F . 92

66 Comparison of EM signals for square and multiply
operations . 92

67 Full 512-bit Separate Square and Multiply Trace after
signal processing using fixed plaintext - RSA Version B
on a Virtex-6 FPGA . 93

68 Full 512-bit Separate Square and Multiply Trace after
signal processing using a different clock and fixed
plaintext - RSA Version 4B on a Virtex-6 FPGA . 93

69 Full 512-bit Separate Square and Multiply Trace after
signal processing using random plaintext - RSA Version
B on a Virtex-6 FPGA . 93

70 Full 512-bit Separate Square and Multiply Trace after
signal processing using a different clock and random
plaintext - RSA Version 4B on a Virtex-6 FPGA . 93

71 Full 512-bit Separate Square and Multiply Trace after
signal processing using fixed plaintext - RSA Version F
on a Virtex-6 FPGA . 94

72 Full 512-bit Separate Square and Multiply Trace after
signal processing using a different clock and fixed
plaintext - RSA Version 4F on a Virtex-6 FPGA . 94

73 Full 512-bit Separate Square and Multiply Trace after
signal processing using random plaintext - RSA Version
F on a Virtex-6 FPGA . 94

74 Full 512-bit Separate Square and Multiply Trace after
signal processing using a different clock and random
plaintext - RSA Version 4F on a Virtex-6 FPGA . 94

xiii

List of Tables

Table Page

1 Factors and Levels . 44

2 RSA Design Execution Time and Size for Virtex-5 FPGA 78

3 Comparison of RSA Design Execution Time . 79

4 RSA Design Execution Time and Size for Virtex-6 FPGA 79

xiv

List of Algorithms

1 Key Generation for RSA Public-Key Cryptosystem [45],

[57] . 17

2 The RSA Algorithm [45] . 17

3 Square-and-Multiply Algorithm for Modular

Exponentiation . 18

xv

List of Abbreviations

Abbreviation Page

USAF United States Air Force . 1

DoD Department of Defense . 1

MCT Military Critical Technology . 1

FISMA Federal Information Security Management Act 1

JSF Joint Strike Fighter . 2

SCA Side Channel Analysis . 2

EMA Electromagnetic Analysis . 2

NIST National Institute of Standards and Technology 3

FIPS Federal Information Processing Standards . 3

PIV Personal Identification Verification . 3

FPGA Field-Programmable Gate Array . 5

EM Electromagnetic . 5

ASIC Applications Specific Integrated Circuit . 7

JTAG Joint Test Action Group . 8

VHSIC Very-High-Speed Integrated Circuit . 8

VHDL VHSIC Hardware Description Language . 8

CLBs Configurable Logic Blocks . 8

LUT Look-Up Table . 8

PR Partial Reconfiguration . 9

AFIT Air Force Institute of Technology . 11

MUX Multiplexer . 11

PRNGs Pseudorandom Number Generators . 14

xvi

Abbreviation Page

LSFR Linear Feedback Shift Register . 14

AES Advanced Encryption Standard . 15

RSA Rivest, Shamir, and Adleman . 16

LSB Least Significant Bit . 18

IP Intellectual Property . 19

FSM Finite State Machine . 20

PUF Physically Uncloneable Functions . 21

CMOS Complementary Metal-Oxide Semiconductor 23

IC Integrated Circuit . 23

SPA Simple Power Analysis . 23

DPA Differential Power Analysis . 23

EC Elliptic Curve . 24

SASEBO Side-channel Atta ck Standard Evaluation Board 25

DES Data Encryption Standard . 25

DDL Dynamic Differential Logic . 27

SEMA Simple Electromagnetic Analysis . 30

DEMA Differential Electromagnetic Analysis . 30

SUT System Under Test . 36

CES CLOAK Encryption System . 36

CUT Component Under Test . 36

xvii

DYNAMIC POLYMORPHIC

RECONFIGURATION TO EFFECTIVELY

“CLOAK ” A CIRCUIT’S FUNCTION

I. Introduction

The proliferation of computing technology has brought with it an increased de-

mand for information protection. Today much of our lives are digitized and stored on

computer systems. These computer systems in one way or another handle the ma-

jority of transactions conducted on a daily basis. Society has become more and more

dependent on the integrity and protection of the digital information used in these

transactions causing an ever increasing need for digital security. The United States

(U.S.) military, including the United States Air Force (USAF), relies on its military

technological superiority to maintain our country’s military dominance. Operations

conducted on Department of Defense (DoD) information networks are of particular

importance to the United States Cyber Command (USCYBERCOM) and the USAF

mission.

1.1 Motivation

The DoD considers any technology that makes a significant contribution to the

military potential of our country to be Military Critical Technology (MCT) [1]. Com-

promise of MCT, such as cryptographic algorithms, can have disastrous consequences

for the end user and security of the nation. The Federal Information Security Man-

agement Act (FISMA) of 2002 describes the importance of information security to

national defense and the economic security of the nation [5]. Cryptographic algo-

1

rithms were adopted by Federal agencies and private industry to provide information

security to protect information by providing integrity, confidentiality, and availability

[5]. In other words, information security provides confidence in the authenticity of

data, provides a way to keep information secret, and provides information in a timely

and reliable manner. Cryptographic algorithms provide differing levels of security

based on the time value and sensitivity requirements of the data being secured.

Threats to this information security include an adversary being able to hack into

our live video intelligence feeds [20] or information systems and retrieve valuable

information. Vital information about the 300 billion dollar Joint Strike Fighter (JSF)

program was stolen through such means [34]. To execute a successful attack on

a system, an adversary only has to compromise the weakest link in a system to

gain access to critical technology. Side Channel Analysis (SCA) attacks on secure

communications devices can be conducted without end users knowing their emissions

are being exploited. These attacks only exemplify the need for more robust secure

communication protocols.

Discovered by Paul Kocher et al. [39], power analysis attacks measure the power

dissipation of a circuit when a transistor is switched from 0 to 1, and conversely 1

to 0. Power analysis is conducted by placing a meter between power and ground

of the circuit to recover information regarding cryptographic operations being per-

formed [39]. Timing analysis attacks exploit the slight differences in the amount of

time required to perform encryption operations [38], [40]. These slight differences

in encryption operations leak information about the secret key being used. Electro-

magnetic Analysis (EMA) attacks are similar to power analysis except they do not

require tampering of the device under attack. EMA exploits the TEMPEST1 (i.e.,

electromagnetic radiation) information leaked by electronic devices commonly called

1TEMPEST is a codename referring to the intelligence-bearing electromagnetic radiation ema-
nating from a circuit while in operation

2

compromising emanations [55].

The National Institute of Standards and Technology (NIST) published the Federal

Information Processing Standards (FIPS) publication 201 pursuant to FISMA of 2002

which specifies the architecture and technical requirements as a common identification

standard for Federal employees and contractors[6]. This FIPS publication specifies

RSA[56] be used at a minimum for all Personal Identification Verification (PIV) cards.

PIV cards are used throughout the DoD to identify users for facility access and secure

communication.

Hardware protection systems seek to secure an electronic device that may be out

of our physical control. The consumer is assumed to be a trusted user and is able to

examine the technology at their leisure. In the case of the new iPhone 4G prototype,

by AppleⓇ, being left in a bar in Redwood City, California, the trusted user lost

positive control of the device. Eventually the prototype found its way into the hands

of GizmodoⓇ. Apple was able to remotely disable and wipe the phone which removes

the software vulnerability, but did not stop the hardware from being subsequently

dissected and features documented for release to the public. The reverse engineering

and release of proprietary phone features and capabilities happened months before

Apple’s big debut of the next generation iPhone. The consumer is assumed to be a

trusted user especially in the case of a military only secure communications device,

the potential still exists that the device be lost or stolen, and subsequently fall into

the hands of a less than trustworthy user.

This research directly supports the USAF mission in the defense of the U.S. and

its global interests through the safeguarding of MCTs so that weapon system capa-

bilities stay out of adversarial hands. Attacks have been shown to exploit timing

vulnerabilities in modern cryptographic systems enabling the recovery of the entire

secret key [38]. Once the attacker compromises the secret key the security of the

3

entire system is compromised.

1.2 Problem Statement

Current public-key encryption systems do not provide adequate software or hard-

ware protection against side channel analysis attacks. In the case of cyrptographic

circuitry, they are particularly susceptible to side channel and power analysis. The

RSA [56] public-key cryptographic algorithm is particularly vulnerable to SCA attacks

in the timing of multiplication and squaring operations used in modular exponentia-

tion accomplished in the private-key operations. These timing attack vulnerabilities

were first discussed by Paul Kocher [38] in 1996. There has since been ample docu-

mentation on the timing attack vulnerabilities affecting current public-key encryption

algorithms. This check and balance of these public algorithms help to ensure their

security by openly testing their limits and finding ways to increase their ability to de-

feat these vulnerabilities. While defensive countermeasures exist in modern designs,

these do not address all methods used by malicious adversaries.

The key vulnerability to a side channel analysis attack in cryptographic algorithms

like RSA is the predictable time required to calculate the modular exponentiation in

the private-key operations. Timing attacks can be conducted by physically connecting

a meter between power and ground on the chip or by non physical means to measure

the TEMPEST information (compromising emanations) leaked by the circuit. What

if we can build a dynamic circuit that can continuously reconfigure itself in order to

successfully obfuscate its intent/purpose from an observer/adversary?

1.3 Research Objectives and Contributions

The desired outcome of this research is the creation and analysis of a Critically Low

Observable Anti-Tamper Keeping Circuit (CLOAK) that is capable of obfuscating the

4

circuit function from side channel analysis by an observer/adversary. This research

seeks the creation and analysis of a CLOAK countermeasure to defend against SCA

attacks on a cryptographic algorithm in order to protect the secret key. This research

is broken down into three different sections with an ultimate goal of protecting the

secret key.

1.3.1 Polymorphic Circuit Design.

The key to providing a secure cryptographic system is the protection of the se-

cret key from the adversary. This research leverages and extends previous work by

Roy Porter [54] [53] and Camdon Cady [22] with polymorphic circuits capable of

changing the way they function based on an input key. A polymorphic circuit design

is developed and implemented on a Field-Programmable Gate Array (FPGA). This

polymorphic circuit design is capable of continuously changing the way it functions

to obfuscate its side channel signature in both power consumption and timing. This

effectively creates the CLOAK countermeasure for hardware obfuscation. The Elec-

tromagnetic (EM) side channel of the circuit is then characterized to ensure proper

functionality by implementing it into the modular exponentiation circuitry of a hard-

ware implementation of RSA.

1.3.2 Implement RSA with Reconfiguration.

An implementation of RSA is designed and synthesized on an FPGA using a

structural approach, which is a design based on the components and their intercon-

nects. This approach gives the developer more control over the implementation of the

modular exponentiation portion of the cryptographic algorithm. The first implemen-

tation uses an unprotected implementation of the modular exponentiation circuitry

for baseline analysis. The second implementation uses the polymorphic circuit design

5

for the modular exponentiation circuitry.

1.3.3 Analyze Side Channel Signatures.

The EM side channel of the original implementation of RSA is characterized to

set an initial baseline for subsequent analysis of the side channel. The baseline is

compared to the modified RSA implementation to characterize the extent the circuit

is able to resist timing attacks and protect the secret key. It is expected that the

combination of elements in this approach culminate in a proof of concept polymorphic

circuit design that enhances the system protective countermeasures by obfuscating

operations.

1.4 Thesis Organization

The work presented in this thesis is organized into five main sections. Chapter 2

follows the introduction and provides background information on related research, to

include reconfigurable computing, cryptographic algorithms, hardware obfuscation,

circuit vulnerabilities, and three types of side channel analysis. Chapter 3 details

the methodology of my approach to the implementation and evaluation of the stated

objectives. Chapter 4 details the results of the experiments and any adjustments

required to facilitate the stated objectives. Finally, Chapter 5 provides a summary

of the relevance the work accomplished and the major contributions of this thesis.

Additionally, it contains recommendations for future directions for extending this

research.

6

II. Literature Review

The following chapter serves to orient the reader with a diverse range of topics

used in the creation and protection of MCTs through hardware obfuscation. This

chapter is structured as follows: Section 2.1 covers the strengths and weaknesses of

reconfigurable computing giving particular emphasis on FPGAs and the motivation

behind its use in this research. The next section, Section 2.2, covers some common

cryptographic algorithms and key generation techniques for use in information secu-

rity. Section 2.3 describes the concept of obfuscating hardware operations. Section

2.4 details four classes of circuit vulnerabilities. Finally, the power, timing, and EM

analysis categories of SCA attacks are developed to include current attacks and coun-

termeasures of each and how they fit in with this research. These categories are

detailed in Sections 2.5, 2.6, and 2.7 respectively.

2.1 Reconfigurable Computing

Reconfigurable computing refers to the ability for a system to reprogram itself or

redefine the way the circuit functions at run-time. This idea of reconfigurable com-

puting has been in existence for almost half a century [32]. An Applications Specific

Integrated Circuit (ASIC) is an integrated circuit that is designed for a specific design

purpose and that design is set at the manufacturer. Any small change in an ASIC

design would force a redesign and refabrication of the entire chip, which is an expen-

sive and time consuming process [29]. FPGAs on the other hand are a reconfigurable

systems capable of having their operations defined after the chip is manufactured.

The primary platform for reconfigurable computing is FPGAs.

The primary advantages to using FPGAs over ASICs is due to the reconfigurable

nature of the circuitry. The ability to define or redefine a circuit’s purpose at the user

7

level or in the field can have great advantages especially if this chip is hardwired into

a deployed system. There may be a need to modify a systems purpose or the way

a system operates based on the needs of the user of the end system. The capability

of obfuscating a circuit’s operations from an adversary by changing how a system or

component does its routine operations can have unique applications in information

security. This advantage can come at the cost of performance since FPGAs still lag

behind ASICs in clock speed and throughput [29].

2.1.1 FPGAs.

An FPGA is a two-dimensional array of reprogrammable gates and other assorted

functional units combined together to carry out different logical functions. FPGAs

can be reprogrammed by the customer multiple times by downloading a bitstream

through the use of propriety software and a Joint Test Action Group (JTAG) interface.

During this configuration process the user defines the Very-High-Speed Integrated

Circuit (VHSIC) hardware circuit description using the VHSIC Hardware Description

Language (VHDL). The proprietary XilinxⓇor AlteraⓇsoftware then transforms the

users VHDL circuit description specifications into a bitstream to be downloaded and

programmed on the chip. Modern FPGAs use a combination of soft-core, embedded

microcontroller, and Configurable Logic Blocks (CLBs) to provide a flexible platform

for rapid system development.

While each manufacturer has a different nomenclature for the architectural ele-

ments of their FPGAs, the basic design is fairly standard. The terms used in this

research are consistent with the Xilinx VirtexⓇ-5 [15] and Virtex-6 [16] FPGAs. Each

FPGA contains top-level logic elements/structures called CLBs. Each CLB contains

two slices which contain equivalent circuitry such as function generators (i.e., Look-Up

Table (LUT)), storage elements, arithmetic logic gates, multiplexers, and fast carry

8

look ahead chains. These CLBs are interconnected by a reconfigurable switch matrix

for routing. Ultimately, all FPGA technology is based on LUT structures to give the

user programmable logic function generators. LUTs are multiple input and single

output structures that give a desired output based on specified input combinations.

The Virtex-5 FPGAs is built using 65nm process technology and are implemented

using 6-input LUT technology. The Virtex-6 FPGAs are also implemented using 6-

input LUT technology, but are built on a smaller 40nm process technology to decrease

power consumption.

Data encryption is a highly repetitive process where FPGAs and reconfigurable

computing have been shown to increase performance of systems by leveraging hard-

ware functions to execute these repetitive processes [29]. FPGAs enable rapid proto-

typing while exploiting the performance gains of using hardware functions. Typically

to reconfigure an FPGA the user must take the system offline to download a new

bitstream design.

2.1.2 Run-time and Partial Reconfiguration.

Reconfiguration in an FPGA can be executed in different ways. The simplest

and most common way is to take the FPGA off-line while it is loaded with a new

bitstream. The ability to reconfigure a circuit leads to an area of particular interest,

the ability to reconfigure the system while it is still in operation. Altera defines run-

time reconfiguration as the ability to modify or change the functional configuration of

the device during operation, through hardware or software changes [7]. The concept of

being able to change portions of a system’s circuitry in run-time instead of taking the

system offline to program the bitstream can have unique implications in information

security.

Partial Reconfiguration (PR) for an FPGA is a Xilinx design flow that attempts to

9

create reconfiguration regions or zones in an FPGA device, so that one region can be

reconfigured while the remainder of the FPGA continues to operate normally [7]. The

ability to change only a portion of a design while leaving others portions untouched

can be a powerful tool. This feature gives the designer the ability to perform repetitive

processes on hardware to increase performance, while maintaining the flexibility of a

software solution [29]. Stone et al., introduced a design where individual LUTs could

be reconfigured while the FPGA was still in operation [61].

Stone’s design has some promising applications, but comes with inherent limi-

tations. The reconfiguration circuit is capable of operating at a higher frequency

compared the rest of the FPGA, which minimizes downtime, but as the design gets

larger the cost starts outweighing the benefit. This design allowed the design to be

dynamically altered, but the routing cannot be changed. Additionally, each design

has pre-compiled bitstreams that must be stored on the system. A solution that is

somewhere in the middle would be optimal.

2.1.3 Polymorphic Reconfiguration.

Some polymorphic gate designs propose non-traditional control variables such as

temperature or voltage to create polymorphic gates originally proposed by Stoica et

al., [60]. These polymorphic gates were then combined to create polymorphic circuits

[58]. These circuits are not very practical for rapid design and employment since the

technology relies on a specific fabrication of the underlying gate structures. Also, the

external conditions required to create these polymorphic changes in the circuits were

not always easily controlled and could pose a serious threat to the standard operation

of the circuit. Critical applications would require a more stable polymorphic design

that is not as susceptible to random environmental impacts. In addition, the use

of external conditions for directing the reconfiguration process also provides another

10

avenue of attack for adversaries.

Polymorphic reconfiguration, as defined by the Air Force Institute of Technology

(AFIT), is a combination of polymorphic gates or decision circuits to create a dy-

namically changing circuit design that is capable of changing the way it functions

based on an input key. A basic example of a polymorphic gate is created by replacing

any 2-input gate with a 4 to 1 Multiplexer (MUX) as defined by [22]. This can be

accomplished by connecting the gate inputs to the MUX input select lines and the

additional input lines of the MUX are driven by the truth table of the gate function

you wish to create. These additional inputs can be driven to a specific level manually

or driven by external key generation circuitry causing the polymorphic gate to func-

tion like a combinational lock to unlock the gates function. An example of converting

an AND gate into a polymorphic AND gate is shown in Figure 1.

c
a

b

0
0
0
1

0
0
0
1

a b

c

0
1
2
3

a b

c

0
1
2
3

(a) 2-input AND
gate

c
a

b

0
0
0
1

a b

c

0
1
2
3

a b

c

0
1
2
3

(b) 2-input Poly-
morphic Gate

c
a

b

0
0
0
1

0
0
0
1

a b

c

0
1
2
3

a b

c

0
1
2
3

(c) Polymorphic
gate configured as
an AND

Figure 1. Polymorphic Gate Conversion

Other gates like polymorphic switches may also be used to create polymorphic

circuits. A polymorphic switch is a 2-input, 2-output switch that uses a single control

line to drive the input/output selection for the gate. An example of the polymorphic

switch and its operation is shown in Figure 2. All these techniques can all be used to

enhance the area of information security and at the heart of information security are

the cryptographic algorithm that protect the information.

11

c
a

b

0
0
0
1

a b

c

0
1
2
3

a b

c

0
1
2
3

ca

b c

0 1
(a) Switch with 0 applied at
control line

c
a

b

0
0
0
1

a b

c

0
1
2
3

a b

c

0
1
2
3

ca

b c

0 1

(b) Switch with 1 applied at
control line

Figure 2. Polymorphic Switch

2.2 Cryptographic Algorithms

Cryptographic algorithms today are primarily used to protect the transmission

and storage of information in digital form. All cryptographic algorithms in one way

or another attempt to take the plaintext1 and scramble it to create ciphertext2 in

a process called encryption or enciphering. The reverse is the act of recovering the

plaintext from the ciphertext, called decryption or deciphering.

Information security is essential to not only national defense, but also the eco-

nomic security of the nation. Many of the transactions conducted online require the

use of public-key encryption and digital signature schemes. Federal employees and

contractors throughout the DoD use PIV cards as a means of identification of users for

facility access and for the use in secure communication. These cryptographic systems

use public-key cryptographic algorithms with a set of encryption transformations and

a set of decryption transformations, as in RSA, to ensure information security. Every

type of cryptographic system requires some sort of private or secret key to enable the

security of the system. In a symmetric-key cryptographic algorithm the encryption

and decryption keys are the same and are known by both sender and receiver, but in

a public-key algorithm the encryption and decryption keys are different. The public

1The Plaintext is the original message to be sent or received.
2The Ciphertext is the scrambled or hidden message that may be trasmitted over non-secure

channels.

12

key is used for encryption while a secret key is used for decryption. In the next few

sections, some methods of generating and protecting the key are discussed, followed

by a popular symmetric-key algorithm (AES), and lastly one of the most commonly

used public-key cryptographic algorithms (RSA) is discussed.

2.2.1 Key Generation and Protection.

All modern cryptographic algorithms rely on the use and protection of a secret key

regardless of the type of cryptosystem. Encryption/decryption systems typically fall

into two different categories: symmetric-key and public-key. Both algorithms require

a secret key. In a symmetric-key cryptosystem it is the secret key and in a public-key

cryptosystem it is the private key. If this key is compromised, the security of the

entire system is compromised, regardless of the particular algorithm used [57]. If one

could analyze a system and retrieve the secret key the security of the system would

be eliminated.

One of the advantages of using a public-key cryptosystem like RSA over a symmetric-

key cryptosystem is that a secure channel is not needed to distribute keys [57]. It

is much easier to use a public-key cryptosystem since the public-key can be freely

distributed and does not need to be kept secret. In a symmetric-key cryptosystem

the key must not only be generated, but then it has to be distributed to all parties

before secure communication can commence. Key generation requires a key of suffi-

cient size and be “random” in the sense that the probability of any particular value

being selected must be sufficiently small [45].

This section discusses two general techniques for key generation: random and

pseudorandom. “In the classical (Kolmogorov) sense, a string of bits is random if

it cannot be described by a shorter string than itself” [42]. A random bit generator

can be used to generate a uniformly distributed random number that would force

13

an adversary to guess 2n possible keys, where n is the number of bits in the key. A

truly random key is difficult to produce, but would provide the best protection in a

cryptosystem. However, generation of true random bits is an inefficient procedure in

most practical environments [45].

Pseudorandom Number Generators (PRNGs) are typically used in cryptographic

systems in the key generation process. If the appropriate PRNG is selected it can

provide adequate protection in the creation of pseudo random seeds. PRNGs often

use a Linear Feedback Shift Register (LSFR), shown in Figure 3, to create the pseudo-

random bit stream. A LSFR is basically a shift register that has its input connected

c
a

b

0
0
0
1

a b

c

0
1
2
3

a b

c

0
1
2
3

ca

b c

0 1

Figure 3. 4-bit LFSR

to some combination of bits already contained within the register. A simple example

of a LFSR would be to have some of the register bits XORed together to form the

input bit into the shift register. A LSFR can be described by an associated feedback

polynomial that shows which coefficients are tapped to determine the input bit. Using

the recommended tap locations in [3] to achieve a maximum-length LFSR counter

for a 4-Bit LSFR there is 2n − 1 = 24 − 1 = 15 possible different numbers before

repeating. This gives us a feedback polynomial shown in Equation 1.

x4 + x3 + 1 (1)

14

2.2.2 AES.

The Advanced Encryption Standard (AES) is a symmetric-key cryptographic al-

gorithm. A symmetric-key cryptographic algorithm uses the same key to encrypt and

decrypt a message. This concept is shown in Figure 4.

Figure 4. AES - Symmetric-Key Cryptographic Algorithm

AES is currently approved by the NIST to be used by Federal agencies to provide

cyptographic protection for sensitive (unclassified) information. AES provides 128 bit

block cipher that is capable of using 128, 192, or 256 bit keys to encrypt and decrypt

[4]. If the circuit components that implement these functions can be identified, the key

can be recovered. The AES algorithm bases its security on the ability to diffuse and

confuse the message and key together to generate the ciphertext. The five functions

used in AES are:

∙ KeyExpansion - This routine is used to generate a series of Round Keys from

the Cipher Key. It is the first function to be performed when an encryption or

decryption operation begins. It takes as an input the 128-, 192-, or 256-bit AES

key and generates 10, 12, or 14 round keys depending on the key length.

∙ SubBytes - This is a transformation function that takes a 4× 4 State3 array of

bytes and uses a non-linear substitution table (S-Box) that operates on each of

the state bytes independently.

3The State is a 4× 4 array containing the intermediate state of the cipher.

15

∙ ShiftRows - This is a transformation function that processes cyclically shifts on

the last three rows of a 4 × 4 State array of bytes . The second row is shifted

to the left one, the third row is shifted left by two, and the forth row is shifted

left by three.

∙ MixColumns - This is a transformation function that takes all the columns of

a 4 × 4 State array of bytes and mixes their data by multiplying each column

of the array by a fixed polynomial.

∙ AddRoundKey - This is a transformation function that adds a Round Key to

the 4×4 State array of bytes using an XOR operation. The length of the Round

Key equals the size of the State.

2.2.3 RSA.

Rivest, Shamir, and Adleman (RSA), named after its inventors, is a public-key

cryptographic algorithm that uses two keys and a modulus function to encrypt and

decrypt messages. RSA is the most widely used a public-key cryptosystem [45] for

information security, but can also be used for digital signatures. A pictorial repre-

sentation of the RSA public-key cryptographic algorithm is shown in Figure 5. In

Figure 5. RSA - Public-Key Cryptographic Algorithm

RSA, two keys are generated e and d called the encryption exponent and the decryp-

16

tion exponent using the modulus n. One key is kept private (secret) while the other

is made public. RSA’s security is based on the intractability if factoring very large

integers, which is closely related to the discrete logarithm problem. The key genera-

tion algorithm is illustrated in pseudocode below in Algorithm 1. Key generation is

important for RSA because the security of the algorithm is based completely on the

“hardness” of factoring a product of two large prime numbers.

Algorithm 1 Key Generation for RSA Public-Key Cryptosystem[45][57]

SUMMARY: each entity creates an RSA public key and a corresponding private key.
Each entity A should do the following:

1. Generate two large random (and distinct) primes p and q, each roughly the same
size.

2. Compute n = pq and �(n) = (p− 1)(q − 1)
3. Select a random integer e, 1 < e < �, such that gcd(e, �(n)) = 1, f(p, q) (i.e., e

and �(n) share no divisors other than 1).
4. Use the extended Euclidean algorithm to compute the unique integer d, 1 < d <
�(n), such that ed ≡ 1(mod �(n))

5. A’s public key is (n, e); A’s private key is d.

A brief description of the RSA public-key cryptographic algorithm is presented in

Algorithm 2. RSA is based on a mathematical function to generate the ciphertext.

Algorithm 2 The RSA Algorithm [45]

SUMMARY: B encrypts a message m for A, which A decrypts.

1. Encryption. B should do the following:
(a) Obtain A’s authentic public key (n, e).
(b) Represent the message as an integer m in the interval [0, n− 1].
(c) Compute c = me mod n (e.g., using Algorithm 3).
(d) Send the ciphertext c to A.

2. Decryption To recover the plaintext m from c, A should do the following:
(a) Use the private key d to recover m = cd mod n.

The RSA discussed in this research uses an implementation based on modular

exponentiation. Modular exponentiation is a fairly simple Square-and-Multiply Al-

17

gorithm shown in Algorithm 3, requiring repetition to implement. The Right-to-Left

design is described in Algorithm 3. This repetition makes the operation easy to

implement, but it also makes RSA particularly vulnerable to SCA attacks.

Algorithm 3 Square-and-Multiply Algorithm for Modular Exponentiation

SUMMARY: Algorithm for calculating plaintext message from ciphertext (m = cd mod n) in RSA.
Where di is exponent bits(0 ≤ i < t) whose binary representation is d =

∑t
i=0 di2

i

Set M ← 1 and C ← c
if d = 0 then

Return (M)
end if
for i = 0 up to t do

if di = 1 then
M = M ∗ C mod n (Multiply Operation)

end if
C = C ∗ C mod n (Square Operation)

end for
Return (M)

The key component in modular exponentiation is the modular multiplication unit.

Figure 6 shows a graphical representation of a Montgomery Modular Multiplication

unit used in this research. This multiplier uses a series of shift and add operations

followed by modulo reductions. The multiplicand is bitwise shifted to the left and

added to the final product based on the Least Significant Bit (LSB) of the multiplier

as it is bitwise shifted to the right. After each shift and add operation the modulus

is subtracted from the sum either 0, 1, or 2 times to get the final product.

The basis for any RSA implementation is modular exponentiation. Given a mod-

ular multiplier instantiation the modular exponentiation operation becomes a simple

repetitive process of squares and multiplies. However, this simplicity also makes the

RSA software and hardware very vulnerable to attacks, particularly to SCA attacks.

18

Figure 6. Montgomery Modular Multiplier

2.3 Hardware Obfuscation

Obfuscation is typically thought of as a technique that transforms a design to a

functionally equivalent design, but resists reverse engineering [28], [66]. Hardware

obfuscation is the modification of circuit hardware to intentionally conceal its func-

tionality from an observer or adversary. Hardware obfuscation is conducted in an

attempt to protect Intellectual Property (IP) from being stolen, or in the case of

cryptographic systems protection of data being passed between systems [25]. There

are two main categories to classify hardware obfuscation used as a part of this re-

search: security through obscurity and authentication based obfuscation.

2.3.1 Security Through Obscurity.

The idea behind security through obscurity involves changing the white-box char-

acteristics or underlying gate structure and signals of the system. Hardware obfusca-

tion that creates security through obscurity can be executed several different ways.

The first technique involves netlist obfuscation [24] while still maintaining the original

19

circuit semantics. This does not defend the circuit from being stolen and used as a

“black-box” system, but it makes it more difficult for an attacker to determine and

modify the circuit functions. The process of netlist obfuscation changes depending

upon the technique, but typically involves some sort of smart selection and replace-

ment of gates to create new paths within the design.

The second technique for obfuscation involves modifying the circuit hardware by

adding extra circuitry at the design level to intentionally obfuscate white-box circuit

functions. This can be accomplished dynamically by reprogramming without halting

operations [61]. Alternately, a circuit may be fabricated with gates that change the

logical flow of the Finite State Machine (FSM) and create multiple paths for circuit

operation. This allows the circuit to dynamically change the way it operates in run-

time. What if you use this logic to enable/disable circuit operations based on a key?

2.3.2 Authentication Based Obfuscation.

Authentication based obfuscation can be accomplished by inserting a FSM into the

control logic of the function causing the system to only function properly if provided

the proper key or authentication protocols. The authentication protocols require some

sort of cryptographic algorithm and digital signatures embedded on the system. The

system will only operate properly if a proper challenge and response is given. These

digital signatures are only known to the creator of the IP core. Each system can

potentially have a unique authentication signature, which would require the storage

and control of these signatures.

The idea of having a hardware specific identifier that would not have to be centrally

controlled led to the development of hardware signatures (digital fingerprints) that

are tied to a specific piece of hardware. If a circuit has this type of functionality

and the hardware is somehow stolen/cloned and placed on similar hardware it will

20

not operate properly. These hardware signatures stemmed from research in Digital

Fingerprinting [30], [41], [52] and Physically Uncloneable Functions (PUF) [33], [62].

Both are similar in nature and involve the use of circuitry that utilizes subtle defects

in the manufacturing process which cause two seemingly identical circuits to operate

remarkably differently. These subtle differences can cause slightly different delays in

the circuitry causing glitches that can be counted to create a hardware based key.

2.4 Circuit Vulnerabilities

MCTs and proprietary information systems need to be secured from potential

attack. There are several classes of attacks that can be used against both ASICs

and FPGAs alike. Four classes of attacks are discussed here: Reverse Engineering,

Invasive Techniques, Semi-Invasive Techniques, and Side Channel Analysis Attacks.

The following vulnerabilities stem from the common circuit structures used to create

FPGAs are also common to ASICs.

2.4.1 Reverse Engineering.

The reverse engineering process is a process of analyzing a circuit to identify the

individual components within a system and how they interact with each other in order

to identify the circuit’s intent. The ultimate goal of reverse engineering is to visualize

the relationships between system components [27]. There are two classifications of

reverse engineering black-box analysis and white-box analysis. The two methods

correspond to the amount of information that is known about the circuit.

In black-box analysis little is known about the circuit structure. This method of

analysis relies on the input/output relationship (i.e., the truth table) of the circuit to

identify it. Inputs are applied to a circuit and the outputs are recorded to enumerate

the truth table and identify the circuit function. For smaller circuits, the truth table

21

of a component can be compared to a library directly. For larger circuits, it is not

possible to even enumerate the truth table let alone compare it to a library [54].

White-box analysis assumes that some information about the circuit structure is

known either through a circuit netlist or imagery. Given a gate-level description of

a circuit it is possible to identify components within a circuit design [64]. Libraries

of optimized components are used to reduce the need to develop entire systems from

scratch. These modern synthesis tools use common components to carry out specific

operations while designers can focus on other ares of development. White box analysis

exploits the use of these common components and hierarchical design methodologies.

2.4.2 Invasive Techniques.

While monitoring a circuit to gain knowledge about it has been somewhat passive

in nature, sometimes other techniques may be required to discover more about the

device. If access to the target device is unrestricted then the device may be physically

tampered with. Invasive techniques require de-packaging components by removing the

protective packaging around the circuit under investigation. These attacks require

specialized tools to de-package and map the chips components. Even though these

techniques have not been demonstrated against FPGA technology directly, the SRAM

technology that FPGAs are built on have been shown to be susceptible to these types

of attacks [65].

2.4.3 Semi-invasive Techniques.

Semi-invasive techniques are similar to invasive techniques in that they must also

have the outer packaging removed, but require less effort and expense to execute.

Semi-invasive techniques are categorized in the area of fault-injections. Fault injection

using low cost items like a camera flash or laser pointer has been shown to temporarily

22

change the state of individual Complementary Metal-Oxide Semiconductor (CMOS)

transistors [59]. This method exploits the fact that the CMOS transistor is susceptible

to ionizing radiation. An attacker can use semi-invasive techniques to flip a bit in a

cryptographic circuit allowing the system to be cracked [19].

2.4.4 Side Channel Analysis Attacks.

SCA attacks are used to non-invasively tamper with an Integrated Circuit (IC)

and attempt to retrieve the secret key by analyzing the electrical emissions leaked

from the circuits switching activity during normal operation. These attacks typically

exploit information leaked from three different side channels: power consumption

[40], timing delays [38], and EM emission [18]. The EM side channel remains the

most viable avenue of attacking cryptographic devices when the power side channel

is unavailable [18]. For the remainder of this research SCA attacks will be classified

in the three main categories for development in Sections 2.5, 2.6, and 2.7:

∙ Power Analysis

∙ Timing Analysis

∙ Electromagnetic Analysis

2.5 Power Analysis

Power analysis attacks were discovered by Kocher [39] and measure the power

dissipation of a circuit when a transistor is switched from 0 to 1, and conversely 1 to

0. Power analysis is conducted by placing a meter across a resistor between power

and ground of the circuit to recover information regarding cryptographic operations

being performed [39]. Power Analysis is divided into two techniques: Simple Power

Analysis (SPA) and Differential Power Analysis (DPA). Both techniques are based on

23

measuring the amount of work the system is accomplishing based on the data being

manipulated.

Simple Power Analysis (SPA): SPA involves directly interpreting power signals

collected on cryptographic circuits operations. SPA can yield information about

the cryptographic circuit’s operations being conducted and secret key [39]. SPA

is conducted using only a single power trace to extract the secret key based on

conditional logic used in the cryptographic operations performed.

Differential Power Analysis (DPA): DPA involves the statistical analysis of the

power signature to yield the entire key or partial information about the key.

This process is designed to recover enough information about cryptographic

circuits to reconstruct the secret key. DPA uses small-scale power effects based

on the data being manipulated during cryptographic operations [39]. These

analysis techniques use a random plaintext and a constant key to correlate the

traces to the data being manipulated.

The first experimental results of power analysis attacks on FPGAs appeared in

[51] where Örs et al. investigated the side channel of a hardware implementation of

Elliptic Curve (EC) point multiplications. They conducted SCA to attack a Mont-

gomery modular multiplication circuit on the Xilinx Virtex-800 FPGA by measuring

the chip power supply directly. EC point multiplication is implemented using a simple

double-and-add method similar to the multiply-and-square operations conducted in

modular exponentiation (ref. Algorithm 3), but have significantly different side chan-

nel signatures. Wang et al., proposed an algorithm variant of Kim’s Countermeasure

[43], that could be resistant to DPA on a hardware implementation of RSA using a

Montgomery modular multiplier[63]. Their design used a form of blinding4 within the

4Blinding involves a process of multiplying operands by a random number

24

modular operations to randomize the power signatures. Their results were all based

on SynopsysⓇVHDL simulations and not validated on hardware.

FPGAs provide an optimal platform to design and test the SCA vulnerabilities

of cryptographic systems prior to deployment. Currently there are several FPGA

platforms that enable a user to conduct SCA attacks on RSA and other cryptographic

algorithms. One such system used by Miyamoto et al., the Side-channel Atta ck

Standard Evaluation Board (SASEBO) [47] [48] [49], is specifically design to exploit

the power side channel. These commercially available systems rarely give the user

full access to the source code to conduct trade studies or to create an optimal design

to meet the security and performance needs of the user. In addition, these systems

require the purchase of specialized hardware to operate. The creation of a hardware

non-specific design capable of being implemented on any standard FPGA platform

would be a perfect platform to conduct trade studies on power analysis attacks and

countermeasures available.

2.5.1 Power Analysis Attacks.

2.5.1.1 Simple Power Analysis Attacks.

Kocher introduced SPA by implementing a SPA attack against the Data En-

cryption Standard (DES) [39]. Kocher analyzed the timing of branching operations

to correlate power signatures directly to cryptographic operations being performed

therefore revealing the secret key [39]. SPA attacks rely on the secret key being used

in conditional logic operations which cause branching conditions based on the bit

values of the key.

25

2.5.1.2 Differential Power Analysis Attacks.

Correlation Coefficient Attacks: DPA relies heavily on a statistical analysis to

conduct attacks. DPA commonly uses the correlation coefficient5 to determine

a linear relationship between data. The most common models used with corre-

lation coefficient attacks are Hamming-Distance and Hamming-Weight Models.

Hamming-Distance and Hamming-Weight Models: The Hamming-Distance model

uses the power signature of cryptographic operations to correlate the observed

transitions of bit values within a register or on a data line. The Hamming-

Weight model correlates the operands based on the Hamming Weight6 of the

operands.

2.5.2 Power Analysis Countermeasures.

2.5.2.1 Simple Power Analysis Countermeasures.

SPA countermeasures are implemented simply by avoiding the use of procedures

that use the secret key in conditional logic within cryptographic circuitry.

2.5.2.2 Differential Power Analysis Countermeasures.

Countermeasures to DPA have been researched since the inception of DPA. There

are countless countermeasures to defend against DPA and they are presented in open

literature. Yet, no countermeasure currently exists that completely protects a cir-

cuit from DPA. There are several classes of DPA countermeasures that are common

throughout the community:

Signal Leakage Reduction: This class of countermeasures involve signal reduc-

5The Correlation Coefficient is is a guess at the covariance between two random variables.
6The Hamming Weight of a binary number represents the number of 1 bits within the data

sequence.

26

tion. This is accomplished by either balancing the hamming weight of the data

or reducing the secret key dependence on conditional logic functions.

Noise Induction: This class of countermeasures involves inducing noise generators,

such as oscillators, into the power consumption to effectively mask the original

circuit’s power. These added signals increase the number of signals required to

conduct an attack. Ultimately we would like to increase the required samples

to an unmanageable size.

Timing Randomization: This class of countermeasure involves randomizing circuit

execution timing. This class is similar to a technique implemented by Kocher

[39]. Timing randomization is accomplished by inserting random delays or clock

modifications [44].

Kaps et al., proposed a countermeasure for DPA attacks on FPGA based AES

implementations by using Dynamic Differential Logic (DDL) equalizing power con-

sumption to increase the number of traces (i.e. encryption cycles) needed [36]. This

technique worked, but at a large area penalty.

2.6 Timing Analysis

Timing analysis attacks exploit the slight differences in the amount of time re-

quired to perform encryption/decryption operations [38], [40]. These slight differences

in encryption operations can leak information about the secret key being used. By

carefully measuring the time required for a cryptographic system to conduct pri-

vate key operations in algorithms like Diffie-Hellman and RSA, attackers are able to

extract the private key [40].

27

2.6.1 Timing Analysis Attacks.

These algorithms are particularly vulnerable in the modular exponentiation por-

tion of the cryptographic algorithms (see Algorithm 3). In modular exponentiation

each bit of the exponent (private key) bits di are used to determine whether a square

operation (di = 0), or a square and multiply operations (di = 1) will be performed.

The goal of an attacker would be to monitor the loop iterations of the execution

cycle timing to extrapolate the private key. Circuits are especially vulnerable when

operations are conducted in a serial manner such as in software implementations of

cryptographic systems because they typically execute one operation at a time. These

attacks require a working knowledge of how the system is implemented in order to

conduct a successful attack.

A more practical method of attack was detailed in [31] that does not require as

much knowledge of the system as those presented by Kocher. This attack used a

Montgomery multiplier unit that used a constant timing regardless of input factors

plus a reduction phase for the modulus. This allowed them to create templates of

the different plaintext input combinations that did and did not require reductions for

each of the loops.

Messerges et al. [46] conducted SPA on implementation of modular exponentiation

on a smart card. Using this implementation Messerges was unable to cross-correlate

differences in the square and multiply power signatures, but was able to identify a

slightly different execution time needed for each operation leading to a combined

power and timing attack. The results of the attack are shown in Figure 7.

2.6.2 Timing Attack Countermeasures.

Kocher suggested that an obvious countermeasure to timing attacks is to force all

operations to take the same amount of time [40]. However forcing software imple-

28

implemented that allow such access. Other assumptions used for particular attacks are
stated in the sections that describe the specific attack details.

5.1 A Simple Correlation Experiment

We performed a correlation experiment to determine ife could be revealed by simply
cross-correlating the power signal from a single multiply operation with the entire expo-
nentiation’s power signal. This attack was designed to see how easy it is to distinguish
the multiplies from the squares, thus revealing the bits ofe. Let the multiply’s power
signal beSm[j] and the exponentiation’s power signal beSe[j]. The cross-correlation
signal,Sc[j] is calculated as

whereW is the number of samples in the multiply’s power signal. That is,W = Tm/T,
whereTm is the time needed for a multiply operation andT is the sampling rate. An
attacker can learn the approximate value ofW through experimentation or from the
smartcard’s documentation.

The power signals and cross-correlation signal obtained from running this experi-
ment are shown in Fig. 2. The exponentiation and multiply power signals were obtained
by running the smartcard with constant input data and averaging 5,000 power signals to
reduce the measurement noise. This experiment was first tested on a known exponent,
so the locations of the squares and multiplies are known and are labeled in the Fig. 2.
The resulting cross-correlation signal shows peaks at the locations of the individual
squares and multiplies, but the height of the peaks are uncorrelated with the type of
operation. Thus, this cross-correlation technique is not useful to differentiate between
squares and multiplies. However, it is interesting to point out that the time needed for
each operation in the square-and-multiply algorithm can be determined from the cross

Sc j[] Sm τ[]Se j τ+[]
τ 0=

W

∑=

Fig. 2. Cross-Correlation of Multiplication and Exponentiation Power Signals
The above signals were obtained using the power analysis equipment described in Section 4.
The signals were averaged for 5,000 exponentiations using a constant input value. The results
show an ability to determine the time between the square-and-multiply operations, but cannot
be used to distinguish multiply operations from squaring operations

Square
Multiply

. . .Square
Multiply

Square

Exponentiation
Power Signal:

Multiplication
Power Signal:

Cross-Correlation
Signal:

149Power Analysis Attacks of Modular Exponentiation in Smartcards

Figure 7. Cross-Correlation of Modular Exponentiation on a Smart Card [46]

mentations to run in constant time is difficult in a platform-independent environment

because of compiler options [40]. Forcing a constant operating time can be easier

to implement using hardware, but then the circuit will still leak information on the

power channel based on switching activity.

Kocher [38] proposed that techniques for blinding signatures [26] could be adapted

to Diffie-Hellman and RSA to prevent modular operations from being directly related

to the secret key. Blinding the exponent can be used to defend against SCA attack

and can be applied to either the message and/or exponent. For RSA, Kocher proposed

that a random pair (vf , vi) could be added to the input message before the modular

exponentiation operations. You first choose a random vf relatively prime to n and

vi = (v−1
f)e mod n. The input message is then multiplied by vi mod n, and the result

is then recovered by multiplying vf mod n.

2.7 Electromagnetic Analysis

Electromagnetic Analysis (EMA) attacks are similar to power analysis except it

does not require physical tampering of the device under attack. EMA exploits the

TEMPEST (i.e., EM radiation) information leaked by electronic devices commonly

called compromising emanations [55]. By using technology like inductive probes, the

29

adversary uses passive analysis to collect circuit power information. The EM side

channel was proposed not long after power analysis and later was demonstrated on

smart cards by Quisquater and Samyden [55]. Just like power analysis, there are

two techniques for EMA introduced by Quisquater: Simple Electromagnetic Analysis

(SEMA) and Differential Electromagnetic Analysis (DEMA).

Simple Electromagnetic Analysis (SEMA): This type of analysis involves the

same processes as SPA except that it uses a different side channel to execute. A

single trace is collected on a cryptographic operation to extract the secret key.

Differential Electromagnetic Analysis (DEMA): This type of analysis involves

the same processes as DPA. Many traces are collected using random plaintext

input and a constant key. Traces are then correlated and analyzed to extract

the secret key.

EMA was first conducted on smart cards by Quisquater using a small coil of wire

connected to an oscilloscope to measure the current [55]. Carlier et al., demonstrated

that the secret key could be revealed by using DEMA on a FPGA implementation

of AES. Carlier also found that the EM side channel emanations of an FPGA are

of the same nature as those from a smart card [23]. They attacked the hardware

implementation of AES successfully showing that the EM side channels of the FPGA

can be exploited by an attacker to retrieve information about the secret key. Mulder

et al., conducted SEMA and DEMA attack on an FPGA implementation of an Elliptic

Curve Cryptosystem [50] executing EC point multiplication.

2.7.1 EMA Attacks.

Attacks conducted on cryptographic circuits using EMA are conducted in the

same manner as power analysis regardless of whether you are conducting SEMA or

DEMA. The only difference is the method of collection.

30

2.7.2 EMA Countermeasures.

The first commonplace countermeasure for EMA is the use of additional metal

layers to reduce the electromagnetic fields on the chip [55]. Another countermeasure

to EMA is to design the circuit for lower power consumption. Noise generators, such

as oscillators, can be easily added to the circuitry to generate additional signals in an

attempt to make EMA more difficult.

2.8 Literature Review Summary

Reconfigurable hardware simplifies and reduces the cost of the design process by

allowing the customer to rapidly iterate through prototype designs. FPGAs have

been found to be vulnerable to the same methods of attack as ASIC circuitry, but

one benefit FPGAs have is the ability to test possible design iterations before locking

in a final design. The AES and RSA cryptographic algorithms were presented as a

basis for cryptographic circuits. Finally, several common side channel analysis attacks

were presented along with possible countermeasures designed increase the required

traces to an unmanageable size.

31

III. Methodology of the Side Channel Analysis “CLOAK”

Countermeasure

This chapter describes the methodology used to research/create a flexible dy-

namic protection for encryption circuits against Side Channel Analysis (SCA) attacks

by creating the Critically Low Observable Anti-Tamper Keeping Circuit (CLOAK)

countermeasure.

3.1 Problem Definition

Current public key encryption systems do not have adequate protections against

side channel analysis attacks. Cryptographic circuits are particularly susceptible to

EM and power SCA attacks. RSA [56] public key cryptographic algorithm is espe-

cially vulnerable to SCA attacks by timing of multiplication and squaring operations

used during modular exponentiation of the private-key operations. Timing attack vul-

nerabilities affect many current public key encryption algorithms [38]. While static

defensive countermeasures have been incorporated in more recent designs, they do

not address all the techniques known to be used.

The key vulnerability a SCA attack exploits in cryptographic algorithms like RSA

is the predictable time required to calculate the private key operation using modular

exponentiation. Timing attacks can be conducted by physically connecting a meter

between power and ground on the chip or by non physical means to measure the EM

radiation leaked by the circuit.

3.1.1 Goals and Hypothesis.

The goal of this research is to determine whether a polymorphic circuit can protect

a device from an EM timing analysis attack. The hypothesis of this research is that

32

the EM signature of a cryptographic algorithm can be varied in such a way that the

observer/adversary cannot correlate side channel signature to the cryptographic func-

tions being executed. The approach to accomplish this is discussed in the following

sections.

3.1.2 Research Approach.

The desired outcome of this research is the creation and analysis of a Critically Low

Observable Anti-Tamper Keeping Circuit (CLOAK) countermeasure that provides

flexible dynamic protection for encryption circuits against SCA attacks. This research

is accomplished in three parts the polymorphic circuit design, implementation of RSA

with reconfiguration, and analysis of the side channel signatures all with the ultimate

goal of protecting the secret key.

3.1.2.1 Polymorphic Circuit Design.

The key to providing a secure cryptographic system is the protection of the secret

key from the adversary. This research leverages and extends previous work by Porter

[54] [53] and Cady [22] by using polymorphic circuits. Polymorphic reconfiguration

is a combination of polymorphic gates or decision circuits to create a dynamically

changing circuit design that is capable of changing the way they function based on an

input key. A polymorphic circuit design is developed and implemented on a FPGA.

This polymorphic circuit design is capable of continuously changing the way it func-

tions to obfuscate its side channel signature in both power consumption and timing.

This effectively creates the CLOAK countermeasure for hardware obfuscation. The

EM side channel of the circuit is then characterized to insure proper functionality

by implementing it into the modular exponentiation circuitry of a hardware imple-

mentation of RSA. The entire polymorphic circuit development process using block

33

diagrams is shown in Figure 8.

(a) Original RSA Trace

(b) Baseline RSA Trace

(c) Level Power RSA Trace

(d) Randomized Power RSA Trace

(e) Randomized Power and Timing (CLOAK ed) RSA Trace

Figure 8. Development of the Polymorphic Circuit Design using Block Diagrams

The polymorphic circuit development is broken down into three primary steps:

1. Flatten Power Signature: The original EM trace for RSA is shown in Figure

8(a) where the square and multiply operations, shown with “S” and “M” blocks,

34

are executed at the same time. Flattening the power involved two iterations.

The first iteration shown in 8(b) separated the square and multiply operations

in time and became the baseline version of RSA. The second iteration shown in

8(c) reduced the two modular multiplier instantiations down to one instantiation

for both multiply and squaring operations to become the level power version of

RSA.

2. Randomize Power Signature: Once the circuit power consumption was rel-

atively level the power consumption within each multiplier operation was ran-

domized by iterating through multiple adders within each modular multiplier

instantiation. The random power version of RSA is shown in Figure 8(d).

3. Randomize Circuit Timing: The third and final step in the polymorphic

circuit development randomized the circuit power consumption and timing in

order to create the final CLOAK ed RSA design, shown in Figure 8(e).

3.1.2.2 Implement RSA with Reconfiguration.

An RSA implementation is also designed and implemented on an FPGA using

a structural approach, which is a design based on the components and their inter-

connects. This design approach gives the developer more control over the implemen-

tation of the modular exponentiation portion of the cryptographic algorithm. The

first implementation of RSA uses unobfuscated modular exponentiation circuitry for

baseline analysis. The second implementation uses the polymorphic circuit design for

the modular exponentiation circuitry.

3.1.2.3 Analyze Side Channel Signatures.

The EM side channel of the original RSA implementation is characterized to obtain

a baseline for subsequent analysis of the side channel. The baseline is compared to the

35

modified RSA implementation to characterize the extent the circuit is able to resist

timing attacks and protect the secret key. It is expected that the combination of

elements in this approach culminate in a proof-of-concept polymorphic circuit design

that enhances system protective countermeasures by obfuscating operations.

3.2 System Boundaries

The System Under Test (SUT) is the Polymorphic CLOAK Encryption System

(CES) as shown in Figure 9. The Polymorphic CES consists of four primary compo-

nents: RSA encryption algorithm, an FPGA, a processor, and the CLOAK counter-

measure.

Figure 9. Polymorphic CLOAK Encryption System

The Component Under Test (CUT) is the CLOAK countermeasure integrated into

a hardware implementation of the RSA cryptographic algorithm on a Xilinx Virtex-5

FPGA. The system also contains a PowerPCⓇ440 Processor Core to handle all the

data I/O interfacing for the system. These components are discussed in more detail

36

below.

3.2.1 RSA Encryption Algorithm.

The RSA encryption algorithm is a public-key cryptographic algorithm that uses

two keys and a modulus to encrypt and decrypt messages. This algorithm is imple-

mented using a structural hardware implementation programmed on the FPGA.

3.2.2 Xilinx Virtex-5 and Virtex-6 FPGAs.

The XilinxⓇVirtex-5 and Virtex-6 FPGAs consist of an array of reprogrammable

gates capable of being reprogrammed by the user. The configuration process starts by

defining the Very-High-Speed Integrated Circuit (VHSIC) hardware circuit using the

VHSIC Hardware Description Language (VHDL) [2]. The proprietary XilinxⓇsoftware

transforms the users VHDL circuit description into specifications into a bitstream to

be downloaded and programmed on the chip.

3.2.3 Processor Core.

The PowerPC 440 processor core is a 32-bit processor [14] that serves as the central

control unit for the system implemented on the Virtex-5. The MicroBlaze soft-core1

processor core is also a 32-bit processor that serves as the central control unit for the

system implemented on the Virtex-6. Both processor cores handle all the data I/O

interfacing for the SUT for each FPGA respectively.

3.2.4 CLOAK Countermeasure.

The CLOAK countermeasure is a polymorphic circuit design implemented in the

modular exponentiation component within the RSA encryption algorithm. This poly-

1A soft-core processor is implemented using VHDL on an FPGA

37

morphic circuit design continuously adjusts the way in which the circuit performs its

operations to obfuscate the EM side channel from the adversary.

3.3 System Services

The Polymorphic CLOAK Encryption System provides two services.

RSA Block Encryption Service: The block encryption service either encrypts

the message or not.

Obfuscation of (CLOAK) EM Side Channel: The obfuscation service either

works or not, and any amount of partial obfuscation is considered a success-

ful obfuscation. The amount of partial obfuscation depends on the increased

number of traces required to successfully retrieve the key.

3.4 Workload Parameters

The workload parameters of the system characterize the requests for service to

the system. These parameters describe the quantity and characteristics of the data

the system operates on.

3.4.1 Message Offered Load.

Since the system encrypts messages to ciphertext, the number of messages offered

to the system drives the system workload. An increase in the number of messages

is directly proportional to the workload and the output ciphertext of the system.

This trend holds until the capacity of the system is reached. For the experiment, the

number of messages offered to the system is limited to the number of traces required

in a collection. Initially this value is set to a 1,000 since that is sufficient for the SCA

software.

38

3.4.2 Random versus Static Message.

If the system is using a static message, the system only has to receive and store

the message in memory once per data collection. If the system is using a random

message each encryption cycle, the workload of the system is reduced by the amount

of time it takes to transfer and store the message to memory. For the experiment, a

random message is used each encryption cycle.

3.4.3 Encryption Key Length.

The encryption key length changes the number of operations required to complete

an encryption cycle. A longer key requires more modular exponentiation operations

to produce the resulting ciphertext. An increase in this workload parameter would

decrease the amount of data the system can operate on by increasing the encryption

circuit execution time. For this experiment, the encryption key length is set to 512

bits. A key length of 512-bits gives the system sufficient workload and security, while

still being able to fit on the hardware.

3.4.4 Polymorphic Key Length.

The polymorphic key length determines the circuit change frequency for the poly-

morphic circuit function. Ultimately the circuit should pseudo randomly change its

function each time it is used. That is to say that the encryption circuit should not

only vary function timing between the polymorphic function used, but each itera-

tion of the encryption algorithm should be seeded randomly. This randomness in

the execution time changes the amount of data the system may operate on. For this

experiment, the polymorphic key length is set to 64 bits.

39

3.5 Performance Metrics

The SUT is evaluated based on FPGA area overhead for polymorphic logic, mod-

ular exponentiation timing delay variation, encryption circuit timing delay/latency,

and number of traces.

3.5.1 FPGA Area Overhead for Polymorphic Logic.

In every system, area is a limited commodity and should not be wasted. On a

typical ASIC, an increase in circuit area equates to an increase in chip area, and

therefore, increased cost. On an FPGA, the available programmable space is defined

by the manufacturer. To maximize the functionality of a system on a given FPGA,

care should be taken not to use all the available space for a given circuit. The cryp-

tographic circuitry is implemented with and without the CLOAK countermeasure

to determine the increased area usage for the polymorphic logic. System utilization

metrics are reported by the proprietary Xilinx software. This metric highlights the

feasibility of implementing Polymorphic CES in embedded or space-limited applica-

tions.

3.5.2 Modular Exponentiation Timing Delay Variation.

The key to obfuscating the modular exponentiation function of RSA is to vary

the timing of the square and multiply functions in such a way that an observer

cannot determine which function is being executed. The randomness and frequency

of the timing variations within modular exponentiation functions is measured from

the time the data is available to when the result is produced for each operation. These

results are compared to timing characteristics of normal circuit operations. In stages

of modular exponentiation where the circuit executes only a square operation or a

square and multiply operation, an observer gains insight into determining the key.

40

The timing delays for both square and multiply are varied in such a way that an

observer cannot determine which one is being executed. This metric highlights the

ability of the system to obfuscate its EM side channel signature to reduce the amount

of information the adversary can determine about the system.

3.5.3 Encryption Circuit Timing Delay/Latency.

For any encryption system the major bottleneck is the speed of encryptions.

Therefore, circuit delay/latency is measured. The delay is defined to be the mo-

ment the key and message are available to the encryption circuit to the moment the

ciphertext becomes available. The critical path timing delay of the encryption circuit

is measured using two methods. First, the maximum delay for the encryption cir-

cuitry is estimated and reported by the Xilinx software upon implementation on the

chip. Second, the EM side channel is monitored using an oscilloscope triggered by a

signal indicating the beginning and end of the encryption cycle. This metric reveals

the time required for an encryption cycle.

3.5.4 Number of Traces.

SCA software, whether it be InspectorⓇor MatlabⓇ, require traces to characterize

the systems side channel signature. A trace is the EM or power waveform collected

by the oscilloscope and passed to the SCA software for collection and analysis. Once

this side channel signature is determined the key can then be extracted. The amount

of information an observer can extract about circuit operations increases with the

number and quality of traces collected. The number of traces required to determine

the key is an indication of the level of circuit obfuscation.

41

3.6 System Parameters

The system parameters are the characteristics of the system that if changed affects

the metrics or the response of the system.

3.6.1 Background Noise.

The emanations given off by electronic equipment within the range of the SUT

(hereafter referred to as “Background Noise”) can affect the EM readings. Some of the

background noise, such as power lines or clock circuits, occur at regular frequencies

and can be identified and filtered out of the resulting traces. Background noise sources

are identified and limited to reduce their effect on the SUT.

3.6.2 Implementation of RSA.

The RSA public key algorithm is implemented on a hardware FPGA using struc-

tural rather than behavioral VHDL. A structural approach represents the system

design in terms of its components and interconnections which allows more control

over implementation and how the system will respond. In addition, it enables the

polymorphic circuit design to be integrated into the overall implementation of RSA.

The characteristics of the EM side channel differs greatly depending upon the imple-

mentation method used.

3.6.3 Polymorphic Frequency.

A frequency of the circuit changes is controlled by the length of the polymorphic

key. The polymorphic frequency changes the timing of the modular exponentiation

function in a pseudo random manner. In turn, this will change the system response

and effectively CLOAK the function from SCA.

42

3.6.4 Xilinx FPGAs.

The Xilinx Virtex-5 FPGA is used to implement the hardware portion of the

RSA algorithm. The FPGA allows rapid prototyping and testing of the system.

Each version and family of FPGAs have slightly different EM side channel signature

and timing characteristics. The Virtex-5 chip package consists of a flip-chip design, as

shown in Figure 10, can also affect the EM Side channel signature. These differences

may change the system speed, power consumption, or area, which may also affect the

system response to inputs.

Device Package User Guide www.xilinx.com 21
UG112 (v3.6) September 22, 2010

Package Technology Descriptions
R

Xilinx flip-chip packages are not hermetically sealed, and exposure to cleaning solvents or
excessive moisture during board assembly can pose serious package reliability concerns.
Small vents are placed by design between the heatspreader (lid) and the organic substrate
to allow for outgassing and moisture evaporation. These vent holes are located in the
middle of all four sides of FF flip-chip packages. Solvents or other corrosive chemicals can
seep through these vents and attack the organic materials and components inside the
package and are strongly discouraged during board assembly of Xilinx flip-chip BGA
packages. The only exception would be for EF flip-chip packages in which special epoxy
protection is applied to protect against solvents.

Key Features/Advantages of Flip-Chip BGA Packages

· Easy access to core power/ground, resulting in better electrical performance

· Excellent thermal performance (direct heatsinking to backside of the die)

· Higher I/O density since bond pads are in area array format

· Higher frequency switching with better noise control

Assembling Flip-Chip BGAs
The Xilinx flip-chip BGAs conform to JEDEC body sizes and footprint standards. These
packages follow the EIA moisture level classification for plastic surface mount components
(PSMC). Standard surface mount assembly process should be used with consideration for
the slightly higher thermal mass for these packages.

Like other SMT components, flip-chip BGA assembly involves the following process:
screen printing, solder reflow, post reflow washing. The following will serve as a guideline
on how to assemble flip-chip BGAs onto PCBs.

Screen Printing Machine Parameters

Below is an example of the parameters that were used for the screen printing process. Note
that these might not be optimized parameters. Optimized parameters will depend on
user's applications and setup.

· Equipment: MPM Ultraprint 2000

· Squeegee Type: Metal

· Squeegee Angle: 45°

X-Ref Target - Figure 1-6

Figure 1-6: Flip-Chip BGA Package with Type II Lid

Thermal Interface
Material

Silicon Die

Flip Chip
Solder Bump

Underfill
Epoxy

Adhesive
Epoxy

Copper
Heatspreader

UG112_c1_06_111508

Organic Build-up
Substrate

Solder Ball

Figure 10. Cross Section for Virtex-5 Flip-Chip Package [11]

The Xilinx Virtex-6 FPGA is also used after initial development to characterize

the differences in side channel between the FPGA families. The Virtex-6 chip package

also consists of a similar flip-chip design as the Virtex-5. However, the Virtex-6 is

built using a smaller 40nm process technology enabling decreased power consumption.

3.6.5 Processor Core.

The PowerPC 440 processor core is embedded in the Virtex-5 FPGA and provides

data I/O and controls how the system will operate and respond to inputs. The

processor core also contributes to the background EM noise of the system. The Virtex-

6 FPGA does not contain an integrated PowerPC processor core so a MicroBlaze

43

soft-core processor core will be used.

3.7 Factors

Table 1 contains a summary of the factors and levels used in this methodology.

Each of these factors are described in detail in the following sections.

Table 1. Factors and Levels

Factors Levels

Polymorphic Frequency None/Full
FPGA Version for RSA Virtex-5/Virtex-6

Random vs. Static Message Random/Static

3.7.1 Polymorphic Frequency.

The ability of the system to adjust its function timing establishes the system’s abil-

ity to obfuscate the circuit function from the adversary. This research uses two levels

of polymorphism none and full polymorphism, where full polymorphism is changing

the circuit function for each step of the modular exponentiation algorithm. The ex-

istence of timing variations and the ability to obfuscate the circuit are dependent on

each other and are said to interact with each other.

3.7.2 FPGA Version for RSA.

RSA can be implemented on any FPGA with suitable resources available to fit

the design. Each hardware version will create a different EM side channel signature.

The FPGA version is varied to determine its impact on a successful attack. The

hardware implementations of RSA uses VHDL to define its structure. The FPGA is

varied between Virtex-5 and Virtex-6 designs.

44

3.7.3 Random versus Static Message.

The message is varied between static (fixed message) and random (varied message)

to determine an impact on an attack. A static versus random message may change

the side channel signature by changing the loading on the encryption circuit. Varying

message content increases the difficulty of characterizing the side channel signature

and therefore the ability to attack the system.

3.8 Evaluation Technique

The evaluation technique used is measurement on real hardware since a simulation

can only get you so close to actual values. A real system can more accurately evaluate

the functions of a circuit. Figure 11 shows the experimental configuration. The system

is developed and tested on a Xilinx Virtex-5 board. Measurements (traces) are taken

using an Lecroy WavePro 725Zi oscilloscope with a WilltekⓇ1207 Inductive EM probe

and triggered by pulse signal from the SUT. EM traces from the Polymorphic CES

are compiled and analyzed using Riscure’s Inspector SCA Test Software version 4.1.1.

The SUT will receive the message, key, and control signals from and provide ciphertext

to the Inspector software through the serial port.

Figure 11. Experimental System Configuration

Section 3.1.2 discusses the baseline traces collected with the Inspector software

45

throughout the design process. The traces collected from the obfuscated circuit design

are validated against the baseline traces to ensure proper functionality. Inspector’s

cryptographic analysis software is also used to analyze the circuit’s ability to obfuscate

its function by comparing the number of traces needed for baseline tests.

The effectiveness of polymorphic reconfiguration in the modular exponentiation

design will be evaluated in three parts, the first being the verification of the individ-

ual polymorphic subcircuit side channel signatures. Secondly, the effect on the side

channel signature of the polymorphic modular exponentiation operations compared

to the baseline signatures. Thirdly, characterize the RSA side channel vulnerability

signature of baseline RSA circuit. Finally, a practical case study implementation of

the RSA public key cryptography algorithm using the polymorphic modular expo-

nentiation component. The modular exponentiation component of RSA is chosen as

the implementation test bench due to its vulnerability to timing attacks using the

EM side channel. Evaluation is based on how many traces are required to recover the

secret key and how the results compare to the baseline circuit.

3.9 Experimental Design

A full factorial design is conducted. There are 3 factors with 2 levels each (i.e.

2k, where k = 3) resulting in 8 experiments. Two replications of each experiment are

conducted for a total of 16 experiments. A 95% confidence level is used for subsequent

analysis of the data. This is sufficient to show that the Polymorphic CES can protect

a cryptographic circuit from EMA attacks.

3.10 Methodology Summary

This chapter defines the experimental methodology for the Polymorphic CES.

The goal of this research is to determine the effectiveness of the polymorphic CLOAK

46

circuit as a countermeasure to EM SCA attacks on RSA. This research focuses on the

timing vulnerabilities in the modular exponentiation portions of the RSA algorithm

to secure the secret key from possible attack. The SUT is defined and bounded by

clearly defining its components. The system services are listed with possible outcomes.

Performance metrics are defined based on the system services. System and workload

parameters are identified and associated with their sensitivity to the SUT. A list of

factors and their levels are chosen from the selected parameters. The experimental

design measures the EM side channel signature using an oscilloscope connected to

the Inspector SCA software to collect and analyze traces. These traces are validated

against baseline measurements to evaluate the effectiveness of the SUT. The factors

list is compiled into a full factorial design of a real system resulting in 16 experiments.

47

IV. Results

This chapter first discusses the experimental setup and the methodology used for

attacking the system in Sections 4.1 and 4.2. The chapter continues in Section 4.3

and 4.4 by progressively describing the development of the RSA Encryption System

and polymorphic circuit within the design. Results are given throughout the process

of development and final results for the Polymorphic CES are given in Section 4.5.

Section 4.6 expands the research by adapting the Polymorphic CES design to run

on the Virtex-6 board for comparison. Finally, all the designs are compared to each

other based on running time and size metrics in Section 4.7. These designs are also

compared to comparable industry implementations currently available.

4.1 Experimental Setup

Figure 12. Experimental System Setup

Figure 12 depicts the hardware realization of the system design depicted in the

experimental system configuration shown in Figure 11. On the left is the Lecroy

oscilloscope, in the middle is the Inspector software used for side channel analysis,

48

and on the right is the Electromagnetic (EM) probe measuring the unintended EM

emissions from the SUT.

Figure 13 shows a close up view of the FPGA with an inductive probe placed

on top of the Virtex-5 FPGA with all the connections labeled. Data was not only

collected from the top of the FPGA, but it was also collected from the bottom of the

board as well.

Figure 13. RSA Encryption System Connections

Figure 14 shows the typical Inspector console output for one cycle of RSA En-

cryption with fixed key, modulus, and plaintext. The first line contains the “set key”

command (40h), data length (00 40h = 64 bytes), and the remaining 64 bytes of

data is the 512-bit key value. The second line is the echo from the RSA Encryp-

tion System. Line three contains the “set modulus” command (42h), data length (00

40h = 64 bytes), and the remaining 64 bytes of data is the 512-bit modulus value.

The fourth line is the echo from the RSA Encryption System. Line five contains the

“hardware RSA encryption” command (45h), data length (00 40h = 64 bytes), and

the remaining 64 bytes of data is the 512-bit plaintext value. The sixth line is the

49

Figure 14. Inspector console output for a round of RSA Encryption using sample key
and modulus from [37]

ciphertext response from the RSA Encryption System. The seventh line is an echo

from Inspector to the console indicating the ciphertext received from the FPGA via

the serial port. Inspector has the capability to randomize the plaintext or key value

before sending it to the RSA Encryption System. Retransmission of the key and

modulus is not required if every execution cycle is using the same key and modulus.

4.2 Attack Methodology (Top vs. Bottom and Probe Type)

Initially, a small key and plaintext were used to ensure the circuitry worked prop-

erly. It was soon discovered that using a characteristic key and plaintext size (i.e.,

512-Bits or more) creates considerably larger EM power levels since the circuitry con-

ducts more switching. The flux EM signal of a hardware circuit implementation is

directly proportional to the amplitude of the input voltage, which is directly propor-

tional to the switching activity of the circuit [35]. When using a small key the circuit

has less switching activity and is easier to hack [45] due to the reduced set of possible

key guesses. For this research a realistic full length 512-bit key is used.

During initial attacks on the FPGA it was discovered that the bottom of the

50

Virtex-5 FPGA contains an array of internal power coupling capacitors (VCCINT),

shown in Figure 15. These capacitors not only provide primary internal power to

the FPGA, but tend to leak EM information. To compound this issue the System

Monitor coupling capacitor is found in the direct center of this array. The System

Monitor function is capable of measuring physical operating parameters like on-chip

power supply voltages. The EM information leaked by these capacitors relate directly

to the operations being performed by the FPGA and provide an optimal avenue for

passive EMA of the circuit’s power consumption.

Figure 15. Capacitors on the bottom of the Virtex-5 FPGA

The Virtex-5 FPGA is designed using a Flip-Chip design, shown in Figure 10, in

order to reduce the EM emissions and effects from noise [11]. In an attempt to increase

the EM signal quality collected from the top of the FPGA the copper heatspreader

was removed from the top of the chip. Figure 16 shows the Virtex-5 chip before and

after the copper heatspreader was removed. In a typical passive attack, the chip would

not likely be depackaged it was necessary to make an informed decision on how to

attack the circuit. The removal of the heatspreader did not provide a very noticeable

change in signal strength for the Willtek probe. The reduced signal strength on top

is partially due to the chip design.

51

(a) Chip Capped (b) Chip Decapped

Figure 16. Depackaging the Virtex-5 Chip

As shown in Figure 17, the signal strength between top and bottom of the FPGA is

considerably different. The signal from the bottom is much more defined and allowing

SEMA to be easily conducted. Due to the lower sensitivity and reduced gain of the

Willtek probe it was better suited for attacking the larger signals on the bottom of

the FPGA. The RiscureⓇprobe is more sensitive than the Willtek probe and becomes

(a) EM signal taken from top of board

(b) EM signal taken from bottom of board

Figure 17. Comparison of EM signal strength using Willtek probe

saturated if used to collect data from the bottom of the board. The Riscure probe is

more adapted for smaller and more localized signals. When used to attack the circuit

from the top it gets a much better signal than the Willtek probe. Figure 18 shows

the difference in EM signal power levels between the two probes. The Willtek probe

from the bottom gets almost the double the power amplitude when compared to the

52

Riscure probe from the top.

(a) EM signal taken with the Riscure probe from top of board

(b) EM signal taken with the Willtek probe from bottom of board

Figure 18. Comparison of EM signal strength between probes

The majority of the data was collected by the Willtek probe from the bottom of

the FPGA, which is shown in Figure 19.

Figure 19. EM Inductive Probe on Virtex-5 FPGA

53

4.3 RSA Encryption Development

The RSA Encryption System was developed using behavioral VHDL and imple-

mented on a Virtex-5 FPGA. The 512-Bit RSA algorithm was designed using the

Right-to-Left Square-and-Multiply Algorithm (see Algorithm 3) to implement mod-

ular exponentiation. The system components for my RSA Encryption System are

shown in Figure 20 and are briefly described below. Figure 50 in Appendix A shows

a flowchart of how my RSA Encryption System works.

Figure 20. RSA Encryption System

PowerPC 440 Processor: The on-board PowerPC in the FPGA handles the simple

I/O functions to transfer the plaintext, modulus, and key inputs via a serial

communication to a PC. In addition, the PowerPC handles synchronization of

Riscure’s Inspector software with the RSA Encryption Sytem.

Processor Local Bus(PLB): 32-Bit interface between the PowerPC and the IP

cores.

54

512-Bit RSA Encryption: VHDL description of a 512-Bit RSA Algorithm imple-

mented on the FPGA.

Serial Control Port: The serial I/O is used to transfer externally generated key,

modulus, and plaintext to the PowerPC to start the encryption cycle. At the

end of each encryption cycle, serial I/O is used to transfer the ciphertext back

to a commercial SCA software package called Inspector.

Block RAM (BRAM): BRAM is a configurable memory module on the FPGA

where the PowerPC instructions are stored.

LCD: The LCD displays the number of encryption cycles that have occurred during

system operation.

RSA was initially developed with two equivalent Montgomery modular multiplier

instantiations, shown in Figure 6, to execute the square and multiply operations for

the circuit. This circuit became Version A as described in Appendix C. The two

modular multipliers were programmed to execute simultaneously in time for each

loop of the modular exponentiation process in order to save time in the execution

process. Once data was collected from the EM side channel of the circuit it was

noticed that this circuit structure caused a very dynamic difference in EM signal

levels. Figure 21 shows the first 500�s of the 512-bit trace, shown in Figure 53 of

Appendix B. This trace represents the first design iteration that executed the square

and multiply operations at the same time and caused a signal that leaked a lot of

sensitive information. The SEMA of this trace is also shown in Figure 21 and shows

how the private key can simply be read directly from the trace (right to left). The

first bit in the Right-to-Left Square-and-Multiply Algorithm appears as though it

only conducts a square operation resulting in a 0-bit, but that is only because the

message is multiplied by a “1” so that the first multiply operation can be skipped.

55

Additionally, RSA keys are relatively prime to �(n) and will always be odd. This

means the LSB is assumed to be “1”.

Figure 21. SEMA of Combined Square and Multiply Trace with key (5 8E B5) - RSA
Version A

In the second iteration of Hardware RSA code, the square and multiply operations

were changed to operate separately in time, but using the same two separate modular

multiplier instantiations. This version became the baseline circuit for all future testing

and was named Version B as described in Appendix C. Figure 22 shows the first

500�s of the 512-bit trace, shown in Figure 54 of Appendix B. This trace represents

Figure 22. SEMA of Separate Square and Multiply Trace with key (E B5) - RSA
Version B

the second design iteration where the square and multiply operations were separated

56

in time. In this circuit version, a square operation (di = 0) and a square followed by

a multiply operation (di = 1) can be easily identified since the multiply operations

leak approximately 25mV more power at peak amplitude. The SEMA of this trace

is also shown in Figure 22 and shows how the private key can be easily extrapolated

from the trace. The apparent leakage of the trace can also be seen after some signal

processing to accentuate the dips in the signal in Figure 23.

Figure 23. Separate Square and Multiply Trace after signal processing - RSA Version
B

The second iteration of Hardware RSA had some inherent timing variations due to

how the multiply operations were performed. The timing of the multiply operations

were based on the number of bits between the first and last 1-bit in the multiplier

input and varied a few clock cycles between each operation. This misalignment in the

timing of a randomized input caused some difficulty in conducting DEMA to extract

the key from the baseline circuit version. Due to the difficulty in conducting DEMA

an alternate version was created that had a constant timing based on a fixed length

counter. Figure 24 shows the first 500�s of the 512-bit trace, shown in Figure 55 of

Appendix B. This trace shows the statistical average of 1,000 resampled and signal

processed traces using a random plaintext input. The statistical average package

removes all the differences between the 1,000 traces and creates a trace containing

the average power level for them all. Since the multiply operations use constant timing

the SCA software can easily align and extract the statistical differences between the

traces. The next step after characterizing the baseline EM signal was to develop the

57

polymorphic circuit to create the CLOAK countermeasure.

Figure 24. Separate Square and Multiply Trace after signal processing using constant
timing - RSA Version 2B

4.4 Polymorphic Circuit Development

The polymorphic circuit development to create the Polymorphic CES was broken

down into three steps:

∙ Flatten Power Signature

∙ Randomize Power Signature

∙ Randomize Circuit Timing

4.4.1 Flatten Power Signature.

The first step in the development of the polymorphic circuit design is to flatten

the EM power signature of the RSA circuit. Even though the square and multiply

operations were separated in time they still were using two separate, but equivalent

modular multiplier instantiations. This enabled the circuit to still leak valuable infor-

mation about the functions being executed. Therefore, the third iteration of hardware

RSA was an attempt to flatten the power signature between the square and multiply

operations. This was accomplished by creating one modular multiplier instantiation

within the circuitry to execute both the square and multiply operations. This circuit

became Version C as described in Appendix C.

58

Figure 25 shows the first 500�s of the 512-bit trace, shown in Figure 56 of Ap-

pendix B. This trace represents the third design iteration that uses one modular

multiplier instantiation to execute the square and multiply operations in order to

level the circuit’s power consumption. The timing boundaries for the square and

Figure 25. SEMA overlaid on Level Power Consumption Trace with key (E B5) - RSA
Version C

multiply operations of this trace are also shown in Figure 25, which shows how the

private key can no longer easily be extrapolated from the original trace using SEMA.

However, after some signal processing to accentuate the dips in the signal between

the square and multiply operations, shown in Figure 26, more information about the

trace can be extrapolated. Signal processing allows the trace to be compartmented,

but DEMA needs to be conducted to identify a square versus a multiply operation.

The timing boundaries for this trace can also be seen in Figure 26. SEMA can no

longer be conducted on the trace so the square and multiply labels are superimposed

on the trace as a courtesy. As you can see from the trace, none of the modular

operations correlate with any others in order to identify a square from a multiply.

This circuit design provides a compact and low power cryptographic solution ca-

pable of providing some protection against side channel attacks. Due to a decreased

hardware utilization of 24.6% over the previous implementation; the clock speed was

59

Figure 26. SEMA overlaid on Level Power Consumption Trace with key (E B5) after
signal processing - RSA Version C

doubled to 40MHz. What if the adversary capable of aligning the trace based on the

dips in the power trace? In order to characterize this possibility the circuit design was

modified to have a constant timing based on a fixed length counter. Figure 27 shows

the first 500�s of the 512-bit trace, shown in Figure 58 of Appendix B. This trace

shows the statistical average of 1,000 resampled and signal processed traces using a

random plaintext input. Figure 27 shows a trace with a potential 1.5mV difference

in power levels between a square and multiply operations. This trace is only made

possible by using a multiplier with constant timing. In actuality, the adversary would

not be able to modify the circuitry to collect these traces.

Figure 27. Level Power Consumption Trace after signal processing using constant
timing - RSA Version 2C

Instead, the adversary would use a function similar to an Elastic Alignment1

1An Elastic Alignment is a trace alignment module contained in Inspector capable of local stretch-

60

to attempt to align the traces. Using an elastic alignment in conjunction with a

statistical average on approximately 1,000 random plaintext traces yields the first

500�s of the 512-bit trace, shown in Figure 28. The full 512-bit trace can be found in

Appendix B, Figure 59. Now that the power signatures are relatively level they can

be randomized.

Figure 28. Level Power Consumption Trace after elastic alignment and average - RSA
Version C

4.4.2 Randomize Power Signature.

The second step in the development of the polymorphic circuit design is to ran-

domize the EM power signature. Once the power signature was relatively flattened

between multiply and square operations, the power levels within each modular mul-

tiply operation was then varied in a psuedo-random manner. The fourth and fifth

iteration of the hardware RSA implemented two and three different adders, respec-

tively. Figure 29(a) shows the polymorphic multiplier with a blue box where the

polymorphic adder in Figure 29(b) is placed in the design. The first adder used the

standard VHDL add operator, the second a ripple carry adder, and the third a carry

look-ahead (CLA) adder. This changed the possible power levels for each addition

operation to three different levels. Therefore, using DEMA would be more difficult

since the adders used in each of the operations have three possible correlation levels

ing and compression of traces at multiple points based on a reference trace for synchronization
necessary for DPA or DEMA.

61

for each possible input tripling the complexity. These circuits became Version D and

E respectively as described in Appendix C.

(a) Polymorphic Modular Multiplier (b) Polymorphic Adder

Figure 29. Polymorphic Modular Multiplier with Polymorphic Adder

Figure 30 shows the first 500�s of the 512-bit trace shown in Figure 60 of Appendix

B. This trace represents the fifth design iteration that uses one modular multiplier

instantiation that contains multiple adders in order to randomize the circuit’s power

consumption. The timing boundaries for the square and multiply operations of this

Figure 30. SEMA overlaid on Randomized Power Consumption Trace with key (E B5)
- RSA Version E

trace are also shown in Figure 30, which shows how the private key can no longer

62

easily be extrapolated from the trace using SEMA. The square and multiply labels

are superimposed on the trace as a courtesy to the reader.

After signal processing to accentuate the dips in the signal, shown in Figure 31,

more information is revealed about the trace. Signal processing allows the trace to

be compartmented, but DEMA needs to be conducted to identify a square versus a

multiply operation. The timing boundaries for this trace can also be seen in Figure

31, though SEMA can no longer easily be conducted. As you can see, each multi-

ply and square operation has a randomized power signature and each operation is

different from the next revealing little about the operation being performed. With

a software implementation, the operations would have regular patterns, but in this

hardware implementation the operations are dependent on the inputs to the multiplier

instantiation.

Figure 31. SEMA overlaid on Randomized Power Consumption Trace with key (E B5)
after signal processing - RSA Version E

Using an elastic alignment in conjunction with a statistical average on approxi-

mately 1,000 random plaintext traces yields the first 500�s of the 512-bit trace, shown

in Figure 32. For this design the timing is not randomized enough at the beginning

of the trace so in the first 500�s we can differentiate the squares from the multiplies.

The full 512-bit trace can be found in Appendix B, Figure 62. The full trace shows

63

that after the first 500�s the dips in the signal are still apparent, but a square cannot

be distinguished from a multiply operation. Naturally, these results leads to the next

logical step, which is randomizing circuit timing.

Figure 32. Randomized Power Consumption Trace after elastic alignment and average
- RSA Version E

4.4.3 Randomize Circuit Timing.

The third step in the development of the polymorphic circuit design is to use a

64-bit LFSR to pseudo-randomly adjust the execution times of each of the multiply

operations. Initially the multiplier execution had a slight randomness since the exe-

cution time ended after the multiplier input shifted past the most significant 1-bit,

but only offered a couple of clock cycles of variation between each multiply operation.

First, a 64-bit LFSR was created using the feedback polynomial shown in Equation 2.

This PRNG generates approximately 2n− 1 = 264− 1 = 18.5× 1018 possible different

numbers before repeating. Selected bits of the generated number were then used to

make execution timing decisions shown in Figure 33.

x64 + x63 + x61 + x60 + 1 (2)

The timing flowchart shown in Figure 33 shows that at the beginning of each

multiply or square operation, the first decision (green decision) is executed. This

64

StartStart

Start of Next

Multiply Operation

Execute Random

Timing Reduction?

Yes

No

Shift Multiplier and

Multiplicand twice

to skip one clock

cycle

Shift Multiplier and

Multiplicand one

bit

75%

Are the next three

multiplier bits zeros?

Yes

Skip a clock cycle?

Yes

50%

End of the Multiply

Operation?

No

No

No

Yes

Stop

End of Modular

Exponentiation?

No

Yes

Figure 33. Pseudo-Random Timing Flow Chart

decision is based on the two LSBs of the LFSR and will execute an increased pseudo-

random timing reduction approximately 75% of the time (i.e., both bits are 0-bits).

Otherwise, the original timing reductions based on the number of bits between the

first and last 1-bit in the multiplier input will be executed. The increased timing

reductions involve with the second and third decisions. The second decision (blue

decision) checks if the three LSBs of the multiplier input are zeros. If the three LSBs

are not zeros there is no change in the timing, but if they are zeros then the circuitry

moves to the third decision (red decision). The third decision makes a binary decision

on whether or not to skip a clock cycle based on the LSB of the LFSR and executes

65

50% of the time. A clock cycle in the multiply operation is skipped by simply shifting

the multiplier right two bits and the multiplicand left two bits instead of the normal

one bit.

The final CLOAK modular multiplier is shown in Figure 34 with a red box showing

where the circuitry that randomizes the timing of the multiplier operations. Using the

logic shown in the timing flow chart, the execution time of each multiply operation

was able to be randomized from approximately 490 ± 25 clock cycles. Given the

clock frequency of the RSA circuit is running at 20MHz, the timing of each multiply

operation is randomized from 24 ± 1.25�s. In the grand scheme of things that does

not seem like much time, but this makes it very difficult to align multiple traces even

if the attacker is able to acquire multiple traces using the same key, modulus, and

plaintext.

Figure 34. CLOAKModular Multiplier

Figure 35 shows the first 500�s of the 512-bit trace shown in Figure 63 of Appendix

B. This trace represents the sixth design iteration that uses one modular multiplier

instantiation that contains multiple adders in order to randomize the circuit’s power

66

consumption as well as circuitry to randomize the multiplier execution time. This

circuit became Version F as described in Appendix C.

Figure 35. Randomized Power and Timing Trace - RSA Version F

The timing boundaries for the square and multiply operations of this trace are

also randomized in order to reduce the ability for an attacker to align the traces

for DEMA. The timing boundaries for the square and multiply operations cannot

be determined from the trace shown in Figure 35. The timing boundaries for each

trace is slightly different from each other and also differs from previous versions of

RSA. This trace shows how the private key can no longer easily be extrapolated from

the trace using SEMA and if you took several traces side by side there is no way to

effectively align the traces for DEMA.

After signal processing to accentuate the dips in the signal, shown in Figure 36,

more information is revealed about the trace. Signal processing allows the trace to

become more compartmented, but as you can see the dips in this trace are not as

defined as in previous versions. We know that DEMA needs to be conducted to

identify a square versus a multiply operation, but the SCA software has a difficult

time aligning the traces since the multiplier execution time has been randomized at

different points within each multiply cycle. The timing boundaries for this trace

can also be seen in Figure 36 and square and multiply labels are superimposed for

convenience, though SEMA can no longer easily be conducted. As you can see,

each multiply and square operation has a randomized power signature as well as

randomized circuit timing. Each operation is different from the next, revealing very

67

little about the operation being performed.

Figure 36. SEMA overlaid on Randomized Power and Timing Trace with key (E B5)
after signal processing - RSA Version F

Using an elastic alignment in conjunction with a statistical average on approx-

imately 1,000 traces with a random plaintext applied to a fixed key and modulus

yields the first 500�s of the 512-bit trace, shown in Figure 37. For this design, the

Figure 37. Randomized Power and Timing Trace after elastic alignment and average -
RSA Version F

timing is randomized more than before so that in the first 500�s we cannot align the

signals enough to differentiate the squares from the multiplies. The full 512-bit trace

can be found in Appendix B, Figure 65. Once the Polymorphic CES development

was completed the results were then analyzed.

68

4.5 Protected RSA SCA Results

Figure 38 shows a comparison of EM signals from three circuit versions for a

typical square and multiply operation after signal processing. An example comparison

of EM signals before signal processing can be seen in Figure 66 in Appendix B. The

(a) Baseline Circuit EM signature - RSA Version B

(b) Level Power Circuit EM signature - RSA Version C

(c) Randomized Power Circuit EM signature - RSA Version E

Figure 38. Comparison of EM signals for square and multiply operations after signal
processing

three sample square and multiply operations were taken from traces at the same time

period using the same key, modulus, and plaintext so the operations are identical

for each trace. These traces show the differences in the signatures of a characteristic

square and multiply operation. In actuality, no multiply or square operation has the

same signature as any other within the same trace since the multiplier operation is

a function of its inputs. This characteristic is exploited in the polymorphic circuit

design by randomizing power and then randomizing the timing within the multiply

function and therefore the overall encryption cycle.

Once these randomized power signatures are coupled with randomized circuit tim-

69

ing, the complexity of DEMA is compounded. A square is virtually indistinguishable

from a multiply. Figure 39 shows a comparison of EM signals from the Polymorphic

Circuit using randomized power and timing. These traces show the same multiply

(a) Randomized Power and Timing Trace 0

(b) Randomized Power and Timing Trace 1

(c) Randomized Power and Timing two traces overlaid

(d) Randomized Power and Timing two aligned traces overlaid

Figure 39. Comparison of EM signals for square and multiply operations using identical
inputs - RSA Version F

and square operation with the same inputs as the traces in shown in Figure 38. The

traces show the same square and multiply operations from two different traces using

the same circuitry and identical inputs. However, the two traces are not that similar.

Trace 0 and Trace 1 are shown in Figure 39(a) and 39(b) respectively. Figure 39(c)

shows the two traces overlaid in real time and Figure 39(d) shows the two traces after

they were aligned to have the same start time. The two traces show the two very

different power signatures and timing even though they are both operating on iden-

70

tical inputs. With hardware circuitry operating on the same inputs the trace would

typically have virtually identical signals.

Figure 40 shows the same square and multiply operations from the protected and

unprotected circuits. With the unprotected circuit in Figure 40(a) the identical inputs

produce two virtually identical signals. However, with the protected circuit in Figure

40(b) the two traces are very different and we are unable to correlate a square from

a multiply operation. This shows visually how different the two traces are, but next

we will find out how different they really are.

(a) Two Separate Square and Multiply Traces (Baseline) - RSA Version B

(b) Two Randomized Power and Timing Traces (CLOAK ed) - RSA Version F

Figure 40. Comparison of square and multiply operations using identical inputs

Figure 41 shows the difference in standard deviation for the same protected and

unprotected square and multiply operations using identical inputs. The trace from

the CLOAK ed circuit in Figure 41(b) shows 23 times or 2300% increase in standard

deviation over the baseline trace shown in Figure 41(a).

To decrease the noise in the signal a band pass filter was applied to 20MHz ± 1MHz

to remove all signals above and below the hardware operating frequency. Figure 42

shows the difference in standard deviation for the same protected and unprotected

square and multiply operations using identical inputs. The trace from the CLOAK ed

circuit in Figure 42(b) now shows 28 times or 2800% increase in standard deviation

71

(a) Separate Square and Multiply Trace (Baseline) - RSA Version B

(b) Randomized Power and Timing Trace (CLOAK ed) - RSA Version F

Figure 41. Comparison of standard deviation of square and multiply operations using
identical inputs

over the baseline trace shown in Figure 42(a). So after we applied a filter to reduce

noise the standard deviation increased even more.

(a) Separate Square and Multiply Trace (Baseline) - RSA Version B

(b) Randomized Power and Timing Trace (CLOAK ed) - RSA Version F

Figure 42. Comparison of standard deviation of square and multiply operations after
frequency filtering

Additionally, a standard deviation of the entire trace was calculated across 100

traces using identical inputs. Figure 43 shows the difference in standard deviation

for the first 500�s of the full protected and unprotected traces. The trace from the

CLOAK ed circuit in Figure 43(b) shows 18 times or 1800% increase in standard

deviation over the baseline trace shown in Figure 43(a).

72

(a) Separate Square and Multiply Trace (Baseline) - RSA Version B

(b) Randomized Power and Timing Trace (CLOAK ed) - RSA Version F

Figure 43. Comparison of standard deviation of 100 traces using identical inputs

4.6 Virtex-6 FPGA Investigations

The Polymorphic CES design was designed, implemented, and tested thoroughly

on the Virtex-5 FPGA, but due to size limitations the hardware implementations

of both AES and RSA were not able to coexist on the same chip. The CES was

then adapted to run on the newer 40nm process technology the Virtex-6 FPGA is

built on. This modification was conducted not only to characterize the difference

in side channel signatures, but also to create a fully functional Encryption System

testbed. The system was initially implemented with the baseline RSA circuit named

Version B as described in Appendix C. The system also contained a hardware and

software implementation of AES. Figure 51 in Appendix A shows a flowchart of how

the Encryption System works on the Virtex-6 FPGA. Even with hardware versions

of AES and 512-bit RSA both implemented on the FPGA the Virtex-6 was only 24%

utilized.

The Virtex-6 FPGA has a similar Flip-Chip design as the Virtex-5 FPGA aside

from being build using smaller process technology. In addition, the Virtex-6 FPGA

73

comes equipped with a cooling fan and heat sink, shown in Figure 44, installed on

the copper heatspreader. The presence of this fan assembly on top of the FPGA

limits the ability of a non-invasive attack on the circuit from the top. It was also

discovered that this fan while powered up adds an average of 15mV of noise to the

already reduced signal strength so for initial data collection the fan was turned off.

Figure 44. Fan Assembly on Virtex-6 FPGA

Figure 45 shows the EM probe on the bottom of the Virtex-6 FPGA where all data

collection occurred. Although the Willtek probe is shown in the picture the Riscure

probe was also used for data collection from the bottom of the Virtex-6 FPGA.

Figure 45. EM Inductive Probe on Virtex-6 FPGA

74

4.6.1 Unprotected RSA SCA Results.

Initially the Encryption System was implemented on the Virtex-6 FPGA so that

the hardware RSA operated at the same 25MHz frequency as the MicroBlaze and the

hardware AES. The traces shown in Figure 46 show a comparison of the first 500�s of

the 512-bit trace shown in Figures 67 and 68 in Appendix B. These traces represent the

baseline RSA Version B circuit, where the square and multiply operations operate

separately in time, but use two separate modular multiplier instantiations. These

traces show the difference in signals when other circuitry is running on the system

at the same clock frequency and cannot be filtered out of the trace. Due to the

added noise generated by the MicroBlaze running at the same frequency as the RSA

hardware in Figure 46(a) the square and multiply operations are not differentiable

with the naked eye. Using the Willtek probe the EM signal strength was considerably

lower than with the Riscure probe, but was able to filter out the noise and focus more

on the FPGA operations due to the wider resolution of the Willtek probe.

(a) Separate Square and Multiply Trace using a same clock - RSA Version B

(b) Separate Square and Multiply Trace using a different clock - RSA Version 4B

Figure 46. Comparison of EM signals for Separate Square and Multiply Trace after
signal processing using fixed plaintext on a Virtex-6 FPGA

Using a statistical average on approximately 100 random plaintext traces yields

75

the first 500�s of the 512-bit trace, shown in Figure 47. The full 512-bit trace can

be found in Appendix B, Figure 69 and 70. The full trace shows that after the first

500�s the square and multiply operations are still apparent on the Virtex-6 signals

though the dips in the signal are not as apparent.

(a) Separate Square and Multiply Trace using a same clock - RSA Version B

(b) Separate Square and Multiply Trace using a different clock - RSA Version 4B

Figure 47. Comparison of EM signals for Separate Square and Multiply Trace after
signal processing using random plaintext on a Virtex-6 FPGA

4.6.2 Protected RSA SCA Results.

The initial design for the Polymophic CES on the Virtex-6 FPGA was imple-

mented so that the hardware RSA operated at the same 25MHz frequency as the

MicroBlaze and the hardware AES. The traces shown in Figure 48 show a comparison

of the first 500�s of the 512-bit trace shown in Figures 71 and 72 in Appendix B.

These traces represent the RSA Version F circuit, where the CLOAK countermeasure

randomizes power and timing for the RSA circuit. These traces show the difference in

signals when other circuitry is running on the system at the same clock frequency and

cannot be filtered out of the trace. Even after the noise generated by the MicroBlaze

hardware was removed from the signal shown in Figure 48(b) the square and multiply

76

operations are not differentiable with the naked eye and therefore SEMA cannot be

conducted.

(a) Randomized Power and Timing Trace using a same clock - RSA Version F

(b) Randomized Power and Timing Trace using a different clock - RSA Version 4F

Figure 48. Comparison of EM signals for Randomized Power and Timing Trace after
signal processing using fixed plaintext on a Virtex-6 FPGA

Using a statistical average on approximately 100 random plaintext traces yields

the first 500�s of the 512-bit trace, shown in Figure 49. The full 512-bit trace can

be found in Appendix B, Figure 73 and 74. The full trace shows that after the first

500�s the dips in the signal are still apparent, but a square cannot be distinguished

from a multiply operation.

The Virtex-6 FPGA had an overall lower power signal than the Virtex-5 FPGA.

This lower power signal made it more difficult to process and differentiate the traces,

but the results were still the same. The square and multiply operations are not differ-

entiable. Therefore, Polymorphic CES successfully obfuscates the EM side-channel

on both the Virtex-5 and Virtex-6 FPGAs.

77

(a) Randomized Power and Timing Trace using a same clock - RSA Version F

(b) Randomized Power and Timing Trace using a different clock - RSA Version 4F

Figure 49. Comparison of EM signals for Randomized Power and Timing Trace after
signal processing using random plaintext on a Virtex-6 FPGA

4.7 Design Comparison

Table 2 shows a comparison of design execution time and size for each of the pri-

mary versions of RSA used on the Virtex-5 FPGA in this research. Version descrip-

tions are detailed in Appendix C. The separate square and multiply circuit (Version

B) is used as the baseline circuit for all design comparisons after increasing execution

time by 51% over the original. The level power consumption circuit (Version C) per-

formed very well by providing a decent side channel signature that can not be easily

attacked while still providing a 24.6% decrease in size and a 50% decrease in execution

time. After the CLOAK countermeasure was implemented the circuit execution time

decreased by 3.7% and increased size by 11.1%, flip flops by 10.1%, and LUTs by

34.3%. Table 3 shows how the designs in this research compare to similar hardware

designs being used. When the designs are compared on equal ground the only design

that compares was Blum in [21], where the execution times were only estimated and

were not validated on an FPGA with a fully functional implementation of RSA.

Table 4 shows a comparison of execution time and size for the primary versions of

78

Table 2. RSA Design Execution Time and Size for Virtex-5 FPGA

Version Execution Time1 Utilization Flip Flops LUTs
Combined Sq & Mult A 12.92ms/128�s 80% 10871 21008
Separate Sq & Mult B 19.5ms/180�s 81% 10873 21014

Level Power C 9.75ms/180�s2 65% 9336 14299
Randomized Power 1 D 19.5ms/180�s 70% 10365 17470
Randomized Power 2 E 19.5ms/180�s 85% 11395 24619

CLOAKed F 18.8ms/174�s 90% 11973 28214
1 All circuits were tested with a 20MHz clock rate. First execution time uses a normal 512-bit key

size and the second uses a short key of 15h.
2 RSA Version C was capable of an increased clock rate of 40MHz reducing the execution time by

half (19.5ms @ 20MHz).

Table 3. Comparison of RSA Design Execution Time

Execution Time1 Clock Speed FPGA Type
Hardware w/o CLOAK 19.5ms/180�s 20MHz Virtex-5
Hardware w/ CLOAK 18.8ms/174�s 20MHz Virtex-5

Hardware w/o CLOAK 11.7ms/108�s 33.3MHz Virtex-6
Hardware w/ CLOAK 11.3ms/104.3�s 33.3MHz Virtex-6

SASEBO-R [47] 1, 689ms/16.5ms2 2MHz Virtex-II Pro
SASEBO-R [49] 138ms/1.35ms3 24MHz Virtex-II Pro

Blum High Radix [21] 2.93ms/110�s4 48MHz Virtex-5
Blum [21] 9.38ms/350�s4 48MHz Virtex-5

1 Execution time given for normal 512-bit key size and small key size.
2 Total running time is not given for SASEBO-R so running time is estimated based on

modular multiplication execution time of 2.2ms× 1.5n (n = 512-bits/n = 5-bits)
3 Total running time is not given for SASEBO-R so running time is estimated based on

modular multiplication execution time of ∼ 180�s× 1.5n (n = 512-bits/n = 5-bits)
4 RSA implementation execution times are estimated and were not validated on an

actual FPGA.

RSA used on the Virtex-6 FPGA. Version descriptions are also included in Appendix

C. The table shows that the Virtex-6 FPGA design is capable of implementing larger

designs, but also at higher frequencies.

79

Table 4. RSA Design Execution Time and Size for Virtex-6 FPGA

Version Execution Time1 Utilization2 Flip Flops LUTs
Separate Sq & Mult B 11.7ms/108�s 24% 10876 19307

Level Power C 11.7ms/108�s 20% 9854 14117
CLOAKed F 11.3ms/104.3�s 28% 11978 26384

1 All circuit times are given at 33.3MHz. Initial tests used a 25MHz clock rate, but all circuits
were capable of 33.3MHz. First execution time uses a normal 512-bit key size and the second
uses a short key of 15h.

2 Device utilization shows the number of occupied slices in the entire system to include the AES
hardware.

4.8 Results Summary

The initial RSA design implementation (Version A) executed square and multiply

operations at the same time, but this caused a dynamic contrast of 50mV between

a 1-bit and 0-bit in the key. This extreme circuit leakage is not acceptable in en-

cryption/decryption circuitry. The baseline RSA circuit (Version B) used separate

square and multiply operations using equal, but separate multiplier instantiations.

This multiply operation in this baseline circuit still used 25mV more peak power

than square operations. Efforts were then conducted to implement the polymorphic

circuit design using three basic steps.

The first step in polymorphic circuit design development was to flatten the power

signature (Version C). This step involved the use of one hardware multiplier instanti-

ation to conduct both multiply and square operations. In this circuit design none of

the modular operations correlate with any others in order to identify a square from

a multiply, at least not using SEMA. The second step in polymorphic circuit design

development took this idea further by randomizing the power signature (Version D

and E). This step exploited the fact that Montgomery modular multipliers use a series

of add and subtract operations to conduct modular multiplication. By implementing

three adders within the single multiplier instantiation the power levels within each

80

modular multiply operation are varied between the three adders thus complicating

the DEMA process by adding three additional power levels for each addition oper-

ation. The third and final step in polymorphic circuit design was to randomize the

circuit timing (Version F) to eliminate the ability to successfully align the square and

multiply operations for DEMA. In this design the square and multiply operations

could not be successfully aligned in order to differentiate a square from a multiply

operation successfully creation a polymorphic circuit design. Even if the attacker is

able to acquire multiple traces using a fixed key, modulus, and plaintext each trace

will have have a different side channel signature.

After the Polymorphic CES design was tested thoroughly on the Virtex-5 FPGA

the CES was then adapted to run on the Virtex-6 FPGA. This modification was

conducted not only to characterize the difference in side channel signatures, but also

to create a fully functional Encryption System testbed. The Virtex-6 FPGA imple-

mentations had a lower overall signal strength due to the larger chip size and lower

power levels, but the CLOAK countermeasure was able to successfully obfuscate the

EM side channel.

81

V. Conclusion

This research effort has determined that a polymorphic circuit design can be cre-

ated that varies circuit power consumption and timing can protect a cryptographic

device from EMA attacks. This chapter summarizes the research effort by identifying

and summarizing the objectives that were met, presents conclusions that were deter-

mined, discusses contributions to the field of study, and establishes the foundations

for future achievements.

5.1 Completed Objectives

✓ Polymorphic Circuit Design: A Polymorphic Montgomery Modular Multiplier

was developed and implemented as a CLOAK countermeasure within the modu-

lar exponentiation circuitry of a hardware implementation of RSA cryptographic

algorithm that was capable of changing the way they function in both power

consumption level and circuit timing.

✓ Implement RSA with Reconfiguration: The RSA encryption/decryption algo-

rithm was implemented on the Virtex-5 and Virtex-6 FPGAs using VHDL. The

FPGA based Encryption System designs were designed as testbed systems on

their respective platforms to analyze RSA side channel signatures with and

without the polymorphic circuit design implemented.

✓ Analyze Side Channel Signatures: The EM side channel signatures of the RSA

algorithm was analyzed before and after implementation of the CLOAK coun-

termeasure in order to characterize the circuit’s ability to resist timing attacks.

Culminate in a proof of concept polymorphic circuit design that enhances the

systems protective countermeasures by obfuscating circuit operations from SCA.

82

5.2 Conclusions

This research has determined that a polymorphic circuit design that varies circuit

power consumption and timing can protect a cryptographic device from an EMA at-

tacks. This goal was achieved by varying the EM signature of the RSA cryptographic

algorithm in such a way that the observer/adversary would be unable to correlate

side channel signature to the specific cryptographic functions being executed. Specif-

ically this research designed and implemented a 512-bit hardware version of RSA

using modular exponentiation on the Virtex-5 and Virtex-6 FPGAs using VHDL.

This cryptographic circuit is capable of obfuscating the vulnerable square and mul-

tiply operations within the algorithm in order to effectively CLOAK their function

from side channel attack. As you can see in Figure 40(b), given two traces using

identical inputs on the CLOAK ed circuit gives us two completely different side chan-

nel signatures for the given square and multiply operations. The standard deviation

of the square and multiply operation for the CLOAK ed circuit was shown to be 23

times or 2300% greater than the baseline trace. Additionally, the standard deviation

of 100 full traces of the CLOAK ed circuit were shown to be 18 times or 1800% greater

than 100 baseline traces. Hardware obfuscation is very difficult to accomplish and

in doing so there can be considerable size and performance penalty to a more secure

design. For this research there was an increase in execution time of 51% when the

square and multiply operations were separated in time, but this measure was pivotal

in creating a baseline circuit to obfuscate circuit functions. Once the CLOAK coun-

termeasure was implemented the execution time decreased by 3.7% and size increased

by 11.1%. In the end we were successfully able to obfuscate the hardware functions

of the cryptographic algorithm.

83

5.3 Contributions

∙ Developed a 512-bit hardware implementation of the RSA public-key encryp-

tion/decryption algorithm using modular exponentiation to be used on the

Virtex-5 or Virtex-6 FPGAs.

∙ Incorporated a hardware implementation of the AES symmetric-key encryption

algorithm on the Virtex-5 and Virtex-6 FPGAs.

∙ Created an FPGA based Encryption System testbed, named Polymorphic CES,

to be used for side channel analysis on hardware and software based crypto-

graphic algorithms. Baseline system incorporates a hardware implementation

of AES and RSA as well as a software implementation of AES. On the Virtex-5

Encryption System version the hardware instantiations of RSA and AES are

implemented separately. The Virtex-6 Encryption System version combines

both hardware instantiations of RSA and AES into one fully functional design

capable of running multiple versions of each.

∙ Designed, implemented, and tested the CLOAK countermeasure.

∙ Conducted EM side channel analysis of hardware based RSA before and after

implementation of the CLOAK countermeasure.

5.4 Future Work

∙ Randomizing the order of execution for square and multiply operations within

each step of the modular exponentiation process.

∙ Development of a random RSA key generation module using Java within In-

spector or C-code on the PowerPC in order to be incorporated in the trace

acquisition process of our FPGA based Encryption System testbed.

84

∙ Development of custom DPA/DEMA module within Inspector or Matlab capa-

ble of automating the key extraction process for a hardware based RSA trace.

∙ Addition of circuitry for blinding the exponent.

∙ Addition of noise maker circuitry, such as oscillators, to further obfuscate the

EM signal from the adversary. The MicroBlaze served this function in the

Virtex-6 investigations. Note: Oscillators need to operate at the same frequency

as the RSA circuit otherwise they can be easily filtered out of the trace during

signal processing.

∙ The latest research in Digital Fingerprinting of hardware allows for the gen-

eration of hardware specific keys linked to specific pieces of hardware. These

keys can be used to provide a private key for decryption operations or digital

signatures in algorithms such as AES or RSA. Using such a hardware specific

key for RSA would require a little more signal processing due to the RSA key

generation requirements. This key could also be used to drive a polymorphic

function that would essentially disable the circuit functionality if attempts were

made to copy the system bitstream to another FPGA.

5.5 Summary

This research provides contributions in the information protection and tamper

protection of MCTs. The documented results and analysis of the CLOAK counter-

measure confirms that it successfully obfuscates the EM side channel of the hardware

based RSA circuitry on the Virtex-5 as well as the Virtex-6 FPGA. Also, the devel-

opment of the experimental testbed unit provides the functionality to test encryption

system vulnerabilities and countermeasures on an FPGA based system while having

complete access to the source code.

85

Appendix A. Encryption System Flowcharts

Initialization of

LCD, Timer, HW

RSA, LED, Serial

Port etc…

Is data present on

Serial Port?

Page 1

ENCRYPTION SYSTEM MAIN C CODE FLOWCHART

Start

Is Command = Key

(40h)?

NO

YES

Is Command = HW

Plaintext & Encrypt

(45h)?

NO

Set RSA Exponent

in Memory and

Send to Hardware

Set Plaintext in

Memory

YES

YES

RSA

Hardware

Encryption

Ciphertext

Sent to

Serial Port

Plaintext

& Length

Exponent

& Length

Is Command = Mod

(42h)?

NO

Set RSA Modulus

in Memory and

Send to Hardware

YES
Modulus &

Length

Modulus

Sent to

Serial Port

Exponent

Sent to

Serial Port

Figure 50. RSA Encryption System Flowchart on the Virtex-5 FPGA

86

Page 1

ENCRYPTION SYSTEM MAIN C CODE FLOWCHART

Is Command = Key

(30h)?

Is Command = SW

Plaintext & Encrypt

(34h)?

Is Command = HW

Plaintext & Encrypt

(35h)?

NO

NO

Set Key in Memory

and Send to

Hardware

Set Plaintext in

Memory

Set Plaintext in

Memory

YES

YES

YES

AES Software

Encryption

AES

Hardware

Encryption

Ciphertext

Sent to

Serial Port

Ciphertext

Sent to

Serial Port

Plaintext

& Length

Plaintext

& Length

Key &

Length

YES

Is Command = Key

(40h)?

Is Command = HW

Plaintext & Encrypt

(45h)?

NO

Set RSA Exponent

in Memory and

Send to Hardware

Set Plaintext in

Memory

YES

YES

RSA

Hardware

Encryption

Ciphertext

Sent to

Serial Port

Plaintext

& Length

Exponent

& Length

Is Command = Mod

(42h)?

NO

Set RSA Modulus

in Memory and

Send to Hardware

YES Modulus &

Length

Modulus

Sent to

Serial Port

Exponent

Sent to

Serial Port

NO

Is data present on

Serial Port?

Key Sent to

Serial Port

Initialization of

LCD, Timer, HW

RSA, LED, Serial

Port etc…

Start

YES

NO

Figure 51. Encryption System Flowchart on the Virtex-6 FPGA

87

Initialization of

LCD, Timer, HW

AES, LED, Serial

Port etc…

Is data present on

Serial Port?

Page 1

AES MAIN C CODE FLOWCHART

Start

Is Command = Key

(30h)?

NO

YES

Is Command = SW

Plaintext & Encrypt

(34h)?

Is Command = HW

Plaintext & Encrypt

(35h)?

NO

NO

Set Key in Memory

and Send to

Hardware

Set Plaintext in

Memory

Set Plaintext in

Memory

YES

YES

YES

AES Software

Encryption

AES

Hardware

Encryption

Ciphertext

Sent to

Serial Port

Ciphertext

Sent to

Serial Port

Plaintext

& Length

Plaintext

& Length

Key &

Length

Figure 52. AES Encryption System Flowchart on the Virtex-5 FPGA

88

Appendix B. RSA Traces

2.1 Virtex-5 FPGA Traces

Figure 53. Full 512-bit Combined Square and Multiply Trace - RSA Version A

Figure 54. Full 512-bit Separate Square and Multiply Trace - RSA Version B

Figure 55. Full 512-bit Separate Square and Multiply Trace using constant timing -
RSA Version 2B

Figure 56. Full 512-bit Level Power Consumption Trace - RSA Version C

89

Figure 57. Full 512-bit Level Power Consumption Trace after signal processing - RSA
Version C

Figure 58. Full 512-bit Level Power Consumption using constant timing - RSA Version
2C

Figure 59. Full 512-bit Level Power Consumption Trace after elastic alignment and
average - RSA Version C

Figure 60. Full 512-bit Randomized Power Consumption Trace - RSA Version E

90

Figure 61. Full 512-bit Randomized Power Consumption Trace after signal processing
- RSA Version E

Figure 62. Full 512-bit Randomized Power Consumption Trace after elastic alignment
and average - RSA Version E

Figure 63. Full 512-bit Randomized Power and Timing Trace - RSA Version F

Figure 64. Full 512-bit Randomized Power and Timing Trace after signal processing -
RSA Version F

91

Figure 65. Full 512-bit Randomized Power and Timing Trace after elastic alignment
and average - RSA Version F

(a) Baseline Circuit EM signature - RSA Version B

(b) Level Power Circuit EM signature - RSA Version C

(c) Randomized Power Circuit EM signature - RSA Version E

Figure 66. Comparison of EM signals for square and multiply operations

92

2.2 Virtex-6 FPGA Traces

Figure 67. Full 512-bit Separate Square and Multiply Trace after signal processing
using fixed plaintext - RSA Version B on a Virtex-6 FPGA

Figure 68. Full 512-bit Separate Square and Multiply Trace after signal processing
using a different clock and fixed plaintext - RSA Version 4B on a Virtex-6 FPGA

Figure 69. Full 512-bit Separate Square and Multiply Trace after signal processing
using random plaintext - RSA Version B on a Virtex-6 FPGA

Figure 70. Full 512-bit Separate Square and Multiply Trace after signal processing
using a different clock and random plaintext - RSA Version 4B on a Virtex-6 FPGA

93

Figure 71. Full 512-bit Separate Square and Multiply Trace after signal processing
using fixed plaintext - RSA Version F on a Virtex-6 FPGA

Figure 72. Full 512-bit Separate Square and Multiply Trace after signal processing
using a different clock and fixed plaintext - RSA Version 4F on a Virtex-6 FPGA

Figure 73. Full 512-bit Separate Square and Multiply Trace after signal processing
using random plaintext - RSA Version F on a Virtex-6 FPGA

Figure 74. Full 512-bit Separate Square and Multiply Trace after signal processing
using a different clock and random plaintext - RSA Version 4F on a Virtex-6 FPGA

94

Appendix C. Version Control

AES Version A (aes hw v1 00 a): Working version of the non-iterative 128-bit

Hardware AES code.

AES Version B (aes hw v1 00 b): Working version of the iterative 128-bit Hard-

ware AES code.

RSA Version A (rsa hw v1 00 a): First working version of 512-bit Hardware RSA

code. Square and Multiply are executed at the same time.

RSA Version B (rsa hw v1 00 b): Second iteration of the 512-bit Hardware RSA

code. Square and Multiply are executed at the different times, but using two

different instantiations for the square and multiply operations.

RSA Version 2B (rsa hw v2 00 b): Same as the previous except the multiply

operations all have the same execution time.

RSA Version 4B (rsa hw v4 00 b): Same as Version B except it uses an external

clock input so the MicroBlaze on the Virtex-6 can run at a different clock

frequency.

RSA Version C (rsa hw v1 00 c): Third iteration of the 512-bit Hardware RSA

code. Square and Multiply are executed at the different times, and uses only

one instantiation of the multiplier for the square and multiply operations. This

is the baseline starting point for implementing the CLOAK countermeasure.

RSA Version 2C (rsa hw v2 00 c): Same as the previous except the multiply

operations all have the same execution time.

RSA Version 3C (rsa hw v3 00 c): Same as Version C except except it uses runs

1024-Bit Hardware RSA Code on the Virtex-6.

95

RSA Version 4C (rsa hw v4 00 c): Same as Version C except it uses an external

clock input so the MicroBlaze on the Virtex-6 can run at a different clock

frequency.

RSA Version D (rsa hw v1 00 d): Fourth iteration of the 512-bit Hardware RSA

code. Square and Multiply are executed at the different times, and uses only

one instantiation of the multiplier for the square and multiply operations. Each

multiplier implements two adder circuits (one being the VHDL add operator

and the second being a ripple carry adder). This is the first implementation of

the CLOAK countermeasure

RSA Version E (rsa hw v1 00 e): Fifth iteration of the 512-bit Hardware RSA

code. Square and Multiply are executed at the different times, and uses only

one instantiation of the multiplier for the square and multiply operations. Each

multiplier implements three adder circuits (one being the VHDL add operator,

second being a ripple carry adder, and third being a carry look-ahead adder).

This is the first implementation of the CLOAK countermeasure.

RSA Version 2E (rsa hw v2 00 e): Same as the previous except the multiply op-

erations all have the same execution time.

RSA Version F (rsa hw v1 00 f): Sixth iteration of the 512-bit Hardware RSA

code. Square and Multiply are executed at the different times, and uses only

one instantiation of the multiplier for the square and multiply operations. Each

multiplier implements three adder circuits (one being the VHDL add operator,

second being a ripple carry adder, and third being a carry look-ahead adder).

Additionally, this implementation randomizes the timing of each multiply op-

eration to a much greater extent than previous versions. Previous versions

varied execution based on the distance between the first and last 1 bit within

96

the multiplier. This is the second and final implementation of the CLOAK

countermeasure.

RSA Version 4F (rsa hw v4 00 f): Same as Version F except it uses an external

clock input so the MicroBlaze on the Virtex-6 can run at a different clock

frequency.

97

Appendix D. Data Sheets

This section contains selected data sheet information for primary data collection

devices.

4.1 Willtek 1207 Inductive Probe

The Willtex 1207 Inductive Probe [17] is an active probe for contactless measure-

ments. The probe is designed to the following specifications:

∙ Frequency Range - 50 MHz to 4 GHz Specified, 10 MHz to 6 GHz Usable

∙ Gain - 20 dB @ 1 GHz

4.2 Inspector EM Probe

The Inspector EM Probe [12] is an active probe for contactless measurements. De-

vice also contains a hardware device, called an EM Shield or Field Deflector, designed

to reduce unwanted EM Signals. The probe is designed to the following specifications:

∙ Sensitivity @ 1 MHz - 20 MHz/1 �T

∙ Bandwidth - 1 GHz

∙ Resolution - 1 mm2

4.3 Lecroy WavePro 725Zi Oscilloscope

The Lecroy WavePro 725Zi Digital Storage Oscilloscope (DSO) [13] is a 2.5 GHz,

20 GS/s, 4 Cℎ, 10 Mpts/Cℎ DSO with a 15.4” WXGA Color Display.

4.4 Agilent E3631A DC Power Supply

The Agilent E3631A [10] is a triple output DC Power Supply.

98

4.5 Virtex-5 FPGA

The Virtex-5 FXT FPGA ML507 Evaluation Platform [8].

4.6 Virtex-6 FPGA

The Virtex-6 LXT FPGA ML605 Evaluation Platform [9].

99

Bibliography

[1] “Military Critical Technologies List”. URL http://www.dtic.mil/mctl/MCTL.

html.

[2] “IEEE Standard VHDL Language Reference Manual.” ANSI/IEEE Std 1076-
1993, 1994.

[3] “Efficient Shift Registers, LFSR Counters, and Long Pseudo-Random Sequence
Generators”. XAPP 052 (v1.1), 1996. URL http://www.xilinx.com/support/

documentation/application_notes/xapp052.pdf.

[4] “Specification for the Advanced Encryption Standard (AES)”. Federal Informa-
tion Processing Standards Publication 197, 2001. URL http://csrc.nist.gov/

publications/fips/fips197/fips-197.pdf.

[5] “Federal Information Security Management Act of 2002 FISMA (2002)”. Title III
of the E-Government Act - Information Security, 44 U.S.C. Sec. 3541, December
2002.

[6] “Personal Identity Verification (PIV) of Federal Employees and Contractors”.
Federal Information Processing Standards Publication 201-1, March 2006.

[7] “FPGA Run-Time Reconfiguration: Two Approaches”. WP-01055-
1.0, March 2008. URL http://www.altera.com/literature/wp/

wp-01055-fpga-run-time-reconfiguration.pdf.

[8] “ML505/ML506/ML507 Evaluation Platform User Guide”. UG347 (v3.1.1), Oc-
tober 2009. URL http://www.xilinx.com/support/documentation/boards_

and_kits/ug347.pdf.

[9] “ML605 Reference Design User Guide”. UG535 (v1.0), September
2009. URL http://www.xilinx.com/support/documentation/boards_and_

kits/ug535.pdf.

[10] “Agilent E363xA Series DC Power Supply”, 2010. URL http://cp.literature.

agilent.com/litweb/pdf/5968-9726EN.pdf.

[11] “Device Package User Guide”. UG112 (v3.6), September 2010. URL http:

//www.xilinx.com/support/documentation/user_guides/ug112.pdf.

[12] “Inspector Brochure”, 2010. URL http://www.riscure.com/fileadmin/

images/Docs/Inspector_brochure.pdf.

[13] “Lecroy WavePro 7 Zi Series Oscilloscope”, 2010. URL http://www.lecroy.

com/files/pdf/LeCroy_WavePro_7_Zi_Datasheet.pdf.

100

http://www.dtic.mil/mctl/MCTL.html
http://www.dtic.mil/mctl/MCTL.html
http://www.xilinx.com/support/documentation/application_notes/xapp052.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp052.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://www.altera.com/literature/wp/wp-01055-fpga-run-time-reconfiguration.pdf
http://www.altera.com/literature/wp/wp-01055-fpga-run-time-reconfiguration.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/ug347.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/ug347.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/ug535.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/ug535.pdf
http://cp.literature.agilent.com/litweb/pdf/5968-9726EN.pdf
http://cp.literature.agilent.com/litweb/pdf/5968-9726EN.pdf
http://www.xilinx.com/support/documentation/user_guides/ug112.pdf
http://www.xilinx.com/support/documentation/user_guides/ug112.pdf
http://www.riscure.com/fileadmin/images/Docs/Inspector_brochure.pdf
http://www.riscure.com/fileadmin/images/Docs/Inspector_brochure.pdf
http://www.lecroy.com/files/pdf/LeCroy_WavePro_7_Zi_Datasheet.pdf
http://www.lecroy.com/files/pdf/LeCroy_WavePro_7_Zi_Datasheet.pdf

[14] “PowerPC Processor Reference Guide”. UG011 (v1.3), January 2010. URL
http://www.xilinx.com/support/documentation/user_guides/ug011.pdf.

[15] “Virtex-5 FPGA Users Guide”. UG190 (v5.3), May 2010. URL http://www.

xilinx.com/support/documentation/user_guides/ug190.pdf.

[16] “Virtex-6 FPGA Users Guides”, 2010. URL http://www.xilinx.com/support/

documentation/virtex-6.htm.

[17] “Willtek 1207 Inductive Probe Data Sheet”, 2010. URL http:

//www.willtek.com/mediadb/global/download/literature/datasheets/

9100/1207_ds_1-1008_en.pdf.

[18] Agrawal, Dakshi, Bruce Archambeault, Josyula R. Rao, and Pankaj Rohatgi.
“The EM Side-Channel(s)”. Cryptographic Hardware and Embedded Systems,
CHES’02, volume LNCS 2523, 29–45. Springer-Verlag Berlin Heidelberg, 2002.

[19] Aumuller, C, P Bier, W Fischer, P Hofreiter, and JP Seifert. “Fault attacks on
RSA with CRT: Concrete results and practical countermeasures”. CHES 2002,
LNCS 2523, 260–275. Springer-Verlag Berlin Heidelberg, 2002.

[20] Benson, Pam and Michael Sefanov. “Iraqi insurgents hacked Predator drone
feeds, U.S. official indicates”, december 2009. URL http://edition.cnn.com/

2009/US/12/17/drone.video.hacked/index.html.

[21] Blum, Thomas and Christof Paar. “High-Radix Montgomery Modular Exponen-
tiation on Reconfigurable Hardware”. IEEE Trans. Comput., 50:759–764, July
2001.

[22] Cady, Camdon. Static and Dynamic Component Obfuscation on Reconfigurable
Devices. Master’s thesis, Air Force Institute of Technology, 2010.

[23] Carlier, Vincent, Hervé Chabanne, Emmanuelle Dottax, and Hervé Pelletier.
“Electromagnetic side channels of an FPGA implementation of AES”. Cryptology
ePrint Archive, (145), 2004. URL http://eprint.iacr.org/2004/145.pdf.

[24] Chakraborty, R.S. and S. Bhunia. “Hardware protection and authentication
through netlist level obfuscation”. Computer-Aided Design, 2008. ICCAD 2008.
IEEE/ACM International Conference on, 674–677. 2008.

[25] Chakraborty, R.S. and S. Bhunia. “HARPOON: An Obfuscation-Based SoC De-
sign Methodology for Hardware Protection”. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 28(10):1493 –1502, 2009.

[26] Chaum, David. “Blind Signatures for Untraceable Payments”. Advances in
Cryptology Proceedings of Crypto 82, 199–203. Springer-Verlag Berlin Heidelberg,
1983.

101

http://www.xilinx.com/support/documentation/user_guides/ug011.pdf
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf
http://www.xilinx.com/support/documentation/virtex-6.htm
http://www.xilinx.com/support/documentation/virtex-6.htm
http://www.willtek.com/mediadb/global/download/literature/datasheets/9100/1207_ds_1-1008_en.pdf
http://www.willtek.com/mediadb/global/download/literature/datasheets/9100/1207_ds_1-1008_en.pdf
http://www.willtek.com/mediadb/global/download/literature/datasheets/9100/1207_ds_1-1008_en.pdf
http://edition.cnn.com/2009/US/12/17/drone.video.hacked/index.html
http://edition.cnn.com/2009/US/12/17/drone.video.hacked/index.html
http://eprint.iacr.org/2004/145.pdf

[27] Chikofsky, E.J. and II Cross, J.H. “Reverse engineering and design recovery: a
taxonomy”. Software, IEEE, 7(1):13–17, Jan 1990.

[28] Collberg, Christian S., Ieee Computer Society, Clark Thomborson, and Senior
Member. “Watermarking, Tamper-Proofing, and Obfuscation - Tools for Soft-
ware Protection”. IEEE Transactions on Software Engineering, 28:735–746,
2002.

[29] Compton, Katherine and Scott Hauck. “Reconfigurable computing: a survey of
systems and software”. ACM Computing Surveys, 34(2):171–210, 2002.

[30] Crouch, J.W., H.J. Patel, Y.C. Kim, J.T. McDonald, and T.C. Kim. “Creat-
ing digital fingerprints on commercial field programmable gate arrays”. ICECE
Technology, 2008. FPT 2008. International Conference on, 345 –348. 2008.

[31] f. Dhem, J., F. Koeune, P.-A. Leroux, P. Mestr, J.-J. Quisquater, and
J. l. Willems. “A practical implementation of the timing attack”. Smart Card
Research and Applications. Third International Conference, CARDIS’98, volume
LNCS 1820, 104–113. Springer-Verlag Berlin Heidelberg, 2000.

[32] Estrin, G., B. Bussell, R. Turn, and J. Bibb. “Parallel Processing in a Re-
structurable Computer System”. Electronic Computers, IEEE Transactions on,
EC-12(6):747 –755, 1963.

[33] Gassend, Blaise, Daihyun Lim, Dwaine Clarke, Marten van Dijk, and Srinivas
Devadas. “Identification and authentication of integrated circuits: Research
Articles”. Concurr. Comput. : Pract. Exper., 16:1077–1098, September 2004.
ISSN 1532-0626.

[34] Gorman, Siobhan, August Cole, Yochi Drezen, and Evan Perez. “Computer Spies
Breach Fighter-Jet Project.” Wall Street Journal - Eastern Edition, 92:A1 – A2,
2009. URL http://online.wsj.com/article/SB124027491029837401.html.

[35] Kaiser, K.L. Electromagnetic compatibility handbook. Electrical engineering
handbook series. CRC Press, 2005.

[36] Kaps, Jens-Peter and Rajesh Velegalati. “DPA resistant AES on FPGA using
partial DDL”. Proceedings - IEEE Symposium on Field-Programmable Custom
Computing Machines, FCCM 2010, 273 – 280. 2010.

[37] Keromitis, Aggelos. “Generating RSA keys”, August 2010. URL www.

cypherspace.org/rsa/rsa-keygen.html.

[38] Kocher, P. C. and N. Koblitz. “Timing attacks on implementations of Diffie-
Hellman, RSA, DSS, and other systems”. Advances in Cryptology - CRYPTO’96,
volume LNCS 1109, 104–113. Springer-Verlag Berlin Heidelberg, 1996.

102

http://online.wsj.com/article/SB124027491029837401.html
www.cypherspace.org/rsa/rsa-keygen.html
www.cypherspace.org/rsa/rsa-keygen.html

[39] Kocher, Paul, Joshua Jaffe, and Benjamin Jun. “Differential Power Analysis”.
Advances in Cryptology - CRYPTO’99, volume LNCS 1666, 388–397. Springer-
Verlag Berlin Heidelberg, 1999.

[40] Kocher, Paul C. “Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems”. CRYPTO, 104–113. 1996.

[41] Lach, J., W.H. Mangione-Smith, and M. Potkonjak. “Fingerprinting tech-
niques for field-programmable gate array intellectual property protection”.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, 20(10):1253 –1261, October 2001.

[42] L’Ecuyer, Pierre. “Random Numbers for Simulation”. Communications of the
ACM, 33(10):85–97, 1990.

[43] Mamiya, Hideyo, Atsuko Miyaji, and Hiroaki Morimoto. “Efficient Countermea-
sures against RPA, DPA, and SPA”. Cryptographic Hardware and Embedded
Systems - CHES 2004, volume 3156 of Lecture Notes in Computer Science, 243–
319. Springer-Verlag Berlin Heidelberg, 2004.

[44] Mangard, Stefan. “Hardware Countermeasures against DPA A Statistical Anal-
ysis of Their Effectiveness”. Topics in Cryptology CT-RSA 2004, volume 2964
of LNCS 2964, 222–235. Springer-Verlag Berlin Heidelberg, 2004.

[45] Menezes, Alfred J., Scott A. Vanstone, and Paul C. Van Oorschot. Handbook of
Applied Cryptography. CRC Press, Inc., 1996.

[46] Messerges, Thomas, Ezzy Dabbish, and Robert Sloan. “Power Analysis Attacks
of Modular Exponentiation in Smartcards”. Cryptographic Hardware and Embed-
ded Systems - CHES 1999, volume 1717 of Lecture Notes in Computer Science,
724–724. Springer Berlin / Heidelberg, 1999.

[47] Miyamoto, A., N. Homma, T. Aoki, and A. Satoh. “SPA against an FPGA-Based
RSA Implementation with a High-Radix Montgomery Multiplier”. Circuits and
Systems, 2007. ISCAS 2007. IEEE International Symposium on, 1847–1850. May
2007.

[48] Miyamoto, A., N. Homma, T. Aoki, and A. Satoh. “Enhanced power analysis
attack using chosen message against RSA hardware implementations”. Circuits
and Systems, 2008. ISCAS 2008. IEEE International Symposium on, 3282 –3285.
may 2008.

[49] Miyamoto, A., N. Homma, T. Aoki, and A. Satoh. “Evaluation of Simple/-
Comparative Power Analysis against an RSA ASIC implementation”. Circuits
and Systems, 2009. ISCAS 2009. IEEE International Symposium on, 2918–2921.
May 2009.

103

[50] Mulder, E. De, P. Buysschaert, S. B. rs, P. Delmotte, B. Preneel, and I. Ver-
bauwhede. “Electromagnetic analysis attack on an FPGA implementation of an
elliptic curve cryptosystem”. In EUROCON: Proceedings of the International
Conference on “Computer as a tool”, 1879–1882. 2005.

[51] Örs, Siddika, Elisabeth Oswald, and Bart Preneel. “Power-Analysis Attacks on
an FPGA First Experimental Results”. Cryptographic Hardware and Embedded
Systems - CHES 2003, volume 2779 of Lecture Notes in Computer Science, 35–50.
Springer Berlin / Heidelberg, 2003.

[52] Patel, H., Yong Kim, J.T. McDonald, and L. Starman. “Increasing stability and
distinguishability of the digital fingerprint in FPGAs through input word analy-
sis”. Field Programmable Logic and Applications, 2009. FPL 2009. International
Conference on. 31 2009.

[53] Porter, R., S.J. Stone, Y.C. Kim, J.T. McDonald, and L.A. Starman. “Dynamic
Polymorphic Reconfiguration for anti-tamper circuits”. Field Programmable
Logic and Applications, 2009. FPL 2009. International Conference on, 493–497.
Sept. 2009.

[54] Porter, Roy. Critical Technology Tamper Protection Through Dynamic Polymor-
phic Reconfiguration. Master’s thesis, Air Force Institute of Technology, 2009.

[55] Quisquater, Jean-Jacques and David Samyde. “ElectroMagnetic Analysis
(EMA): Measures and Counter-Measures for Smart Cards”. Proceedings of the
International Conference on Research in Smart Cards, E-SMART ’01, volume
LNCS 2140, 200–210. Springer-Verlag Berlin Heidelberg, 2001.

[56] Rivest, R. L., A. Shamir, and L. Adleman. “A Method for Obtaining Digi-
tal Signatures and Public-Key Cryptosystems”. Communications of the ACM,
21:120–126, 1978.

[57] Schneier, Bruce. Applied cryptography (2nd ed.): protocols, algorithms, and
source code in C. John Wiley & Sons, Inc., New York, NY, USA, 1995. ISBN
0-471-11709-9.

[58] Sekanina, L. “Evolutionary design of gate-level polymorphic digital circuits”.
Applications of Evolutionary Computing, volume LNCS 3449, 185–194. Springer-
Verlag Berlin Heidelberg, 2005.

[59] Skorobogatov, Sergei. Semi-invasive attacks - A new approach to hardware secu-
rity analysis. Technical report, University of Cambridge, Computer Laboratory,
Technical Report UCAM-CL-TR-630, 2005.

[60] Stoica, A., R.S. Zebulum, X. Guo, D. Keymeulen, M.I. Ferguson, and V. Duong.
“Taking evolutionary circuit design from experimentation to implementation:
some useful techniques and a silicon demonstration.” IEE Proceedings-Computers
and Digital Techniques, 151(4):295 – 300, 2004.

104

[61] Stone, S.J., R. Porter, Y.C. Kim, and J.V. Paul. “A dynamically reconfigurable
Field Programmable Gate Array hardware foundation for security applications”.
ICECE Technology, 2008. FPT 2008. International Conference on, 305–308. Dec.
2008.

[62] Suh, G. Edward and Srinivas Devadas. “Physical unclonable functions for device
authentication and secret key generation”. Proceedings of the 44th annual Design
Automation Conference, DAC ’07, 9–14. ACM, 2007. ISBN 978-1-59593-627-1.

[63] Wang, Yi, Jussipekka Leiwo, Thambipillai Srikanthan, and Luo Jianwen. “An
Efficient Algorithm for DPA-resistent RSA”. Circuits and Systems, 2006. APC-
CAS 2006. IEEE Asia Pacific Conference on, 1659–1662. 2006.

[64] White, J.L., M.-J. Chung, A.S. Wojcik, and T.E. Doom. “Efficient algorithms for
subcircuit enumeration and classification for the module identification problem”.
519 –522. 2001.

[65] Wollinger, T., C. Paar, Y.K. Cheung, P., G.A. Constantinides, and J.T. de Sousa.
“How secure are FPGAs in cryptographic applications?.” volume LNCS 2778,
91–100. Springer-Verlag Berlin Heidelberg, 2003.

[66] Zhuang, Xiaotong, Tao Zhang, Hsien-Hsin S. Lee, and Santosh Pande. “Hard-
ware assisted control flow obfuscation for embedded processors”. CASES 2004:
International Conference on Compilers, Architecture, and Synthesis for Embed-
ded Systems, 292–302. 2004.

105

Vita

First Lieutenant Jeffrey L. Falkinburg entered the Air Force in 1998 as an Airman

First Class. After completing Basic Military Training he proceeded to Keesler AFB,

MS for Technical Training School. He began his first job as a Computer Maintenance

Technician in the 34th Combat Communications Squadron, Tinker AFB, OK. There

he was deployed to Eskan Village, Kingdom of Saudi Arabia in support of Operation

Southern Watch in 1999. He graduated from the Community College of the Air Force

in 2001 with an Associates of Applied Science in Electronic Systems Technology. In

2002, he went back to Keesler AFB, MS to retrain into Communications - Computer

Systems Control where he then transferred to Offutt AFB, NE. He worked as a

Circuit Actions and Activations Technician in the 55th Communications Squadron,

Offutt AFB, NE. He graduated from Airmen Leadership School and was inducted

as a Non-Commissioned Officer in the grade of Staff Sergeant. He then applied and

was accepted into the Airmen Education and Commissioning Program in 2004 and

was transferred to Detachment 470, Omaha, NE where he entered the Air Force

Reserve Officer Training Corps program. He graduated with his Bachelor of Science

in Computer Engineering from the University of Nebraska - Lincoln and received his

Commission in May 2007 and became a Computer Systems Developmental Engineer.

Second Lieutenant Jeffrey L. Falkinburg then transferred to Eglin AFB, FL where

he worked for Air Force Research Laboratories (AFRL) - Munitions Directorate as a

Scene Generations Computer Engineer. While working at AFRL he was a program

manager in charge of $2M+ effort creating the “first ever” maritime simulation frame-

work to support the Navy Non-line of Sight Precision attack Munition (NLOS PAM)

missile system. In addition, while stationed at Eglin he was competitively chosen

for AngelFire deployment to Al Asad, Iraq in support of Operation Iraqi Freedom

106

providing real-time wide area persistent ISR for the U.S. Marine Corp. Finally, First

Lieutenant Jeffrey L. Falkinburg then applied and was accepted into the Air Force

Institute of Technology (AFIT) in 2009. He was then transferred to Wright Patterson

AFB, OH where he then graduated with a Master’s of Science Degree in Computer

Engineering in March 2011. Upon graduation, Lt Falkinburg will be assigned to

AFRL - Human Effectiveness Directorate at Wright Patterson AFB, OH.

107

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

24–03–2011 Master’s Thesis Aug 2009 — Mar 2011

DYNAMIC POLYMORPHIC RECONFIGURATION TO
EFFECTIVELY “CLOAK” A CIRCUIT’S FUNCTION

ENG 10-326

Jeffrey L. Falkinburg, 1st, USAF; jeffrey.falkinburg@us.af.mil

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT/GCE/ENG/11-03

Dr. Robert L. Herklotz
Program Manager - Information Operations and Security
Air Force Office of Scientific Research (AFOSR/RSL)
875 N. Randolph Street, Suite 325, Room 3112
Arlington, VA 22203-1768
(703) 696-6565; robert.herklotz@afosr.af.mil

AFOSR/RSL

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

Today’s society has become more dependent on the integrity and protection of digital information used in daily
transactions resulting in an ever increasing need for information security. Additionally, the need for faster and more
secure cryptographic algorithms to provide this information security has become paramount. Hardware implementations
of cryptographic algorithms provide the necessary increase in throughput, but at a cost of leaking critical information.
Side Channel Analysis (SCA) attacks allow an attacker to exploit the regular and predictable power signatures leaked by
cryptographic functions used in algorithms such as RSA. In this research the focus on a means to counteract this
vulnerability by creating a Critically Low Observable Anti-Tamper Keeping Circuit (CLOAK) capable of continuously
changing the way it functions in both power and timing. This research has determined that a polymorphic circuit design
capable of varying circuit power consumption and timing can protect a cryptographic device from an Electromagnetic
Analysis (EMA) attacks. In essence, we are effectively CLOAKing the circuit functions from an attacker.

side channel analysis, polymorphic, DEMA, SEMA, RSA, obfuscation, timing analysis, FPGA, countermeasure

U U U UU 126

Dr. Yong C. Kim

(937) 255-3636, x4620; yong.kim@afit.edu

mailto:jeffrey.falkinburg@us.af.mil
mailto:robert.herklotz@afosr.af.mil
mailto:yong.kim@afit.edu

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	I. Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Research Objectives and Contributions
	1.3.1 Polymorphic Circuit Design
	1.3.2 Implement RSA with Reconfiguration
	1.3.3 Analyze Side Channel Signatures

	1.4 Thesis Organization

	II. Literature Review
	2.1 Reconfigurable Computing
	2.1.1 FPGAs
	2.1.2 Run-time and Partial Reconfiguration
	2.1.3 Polymorphic Reconfiguration

	2.2 Cryptographic Algorithms
	2.2.1 Key Generation and Protection
	2.2.2 AES
	2.2.3 RSA

	2.3 Hardware Obfuscation
	2.3.1 Security Through Obscurity
	2.3.2 Authentication Based Obfuscation

	2.4 Circuit Vulnerabilities
	2.4.1 Reverse Engineering
	2.4.2 Invasive Techniques
	2.4.3 Semi-invasive Techniques
	2.4.4 Side Channel Analysis Attacks

	2.5 Power Analysis
	2.5.1 Power Analysis Attacks
	2.5.2 Power Analysis Countermeasures

	2.6 Timing Analysis
	2.6.1 Timing Analysis Attacks
	2.6.2 Timing Attack Countermeasures

	2.7 Electromagnetic Analysis
	2.7.1 EMA Attacks
	2.7.2 EMA Countermeasures

	2.8 Literature Review Summary

	III. Methodology of the Side Channel "CLOAK" Countermeasure
	3.1 Problem Definition
	3.1.1 Goals and Hypothesis
	3.1.2 Research Approach

	3.2 System Boundaries
	3.2.1 RSA Encryption Algorithm
	3.2.2 Xilinx Virtex-5 and Virtex-6 FPGAs
	3.2.3 Processor Core
	3.2.4 CLOAK Countermeasure

	3.3 System Services
	3.4 Workload Parameters
	3.4.1 Message Offered Load
	3.4.2 Random versus Static Message
	3.4.3 Encryption Key Length
	3.4.4 Polymorphic Key Length

	3.5 Performance Metrics
	3.5.1 FPGA Area Overhead for Polymorphic Logic
	3.5.2 Modular Exponentiation Timing Delay Variation
	3.5.3 Encryption Circuit Timing Delay/Latency
	3.5.4 Number of Traces

	3.6 System Parameters
	3.6.1 Background Noise
	3.6.2 Implementation of RSA
	3.6.3 Polymorphic Frequency
	3.6.4 Xilinx FPGAs
	3.6.5 Processor Core

	3.7 Factors
	3.7.1 Polymorphic Frequency
	3.7.2 FPGA Version for RSA
	3.7.3 Random versus Static Message

	3.8 Evaluation Technique
	3.9 Experimental Design
	3.10 Methodology Summary

	IV. Results
	4.1 Experimental Setup
	4.2 Attack Methodology (Top vs. Bottom and Probe Type)
	4.3 RSA Encryption Development
	4.4 Polymorphic Circuit Development
	4.4.1 Flatten Power Signature
	4.4.2 Randomize Power Signature
	4.4.3 Randomize Circuit Timing

	4.5 Protected RSA SCA Results
	4.6 Virtex-6 FPGA Investigations
	4.6.1 Unprotected RSA SCA Results
	4.6.2 Protected RSA SCA Results

	4.7 Design Comparison
	4.8 Results Summary

	V. Conclusion
	5.1 Completed Objectives
	5.2 Conclusions
	5.3 Contributions
	5.4 Future Work
	5.5 Summary

	A. Encryption System Flowcharts
	B. RSA Traces
	2.1 Virtex-5 FPGA Traces
	2.2 Virtex-6 FPGA Traces

	C. Version Control
	D. Data Sheets
	4.1 Willtek 1207 Inductive Probe
	4.2 Inspector EM Probe
	4.3 Lecroy WavePro 725Zi Oscilloscope
	4.4 Agilent E3631A DC Power Supply
	4.5 Virtex-5 FPGA
	4.6 Virtex-6 FPGA

	Bibliography
	Vita

